Author(s): Ch. Prudhvi Raju, G. Raveendra Babu, M. Sowjanya, M. Ramayyappa

Email(s): upendragudimetla@gmail.com

DOI: 10.52711/2231-5675.2021.00041   

Address: Ch. Prudhvi Raju1, G. Raveendra Babu2, M. Sowjanya3, M. Ramayyappa2
1Department of Pharmaceutical Analysis, Shri Vishnu College of Pharmacy (Autonomous), Bhimavaram - 534201, A.P., India.
2Department of Pharmaceutical Analysis, A K R G College of Pharmacy, Nallajerla - 534112, A.P., India.
3Department of Chemistry, Vijaya Teja Degree College, Addanki - 523201, A.P., India.
*Corresponding Author

Published In:   Volume - 11,      Issue - 3,     Year - 2021


ABSTRACT:
Background: The accurate and efficient diagnosis at the early stages of cancers is the key feature for effective treatment and productive research for finding out news to types of cancers. It is essentially true for cancers, where there is no effective cure, but only one treatment is available. But most people have a combination of treatments, such as surgery with chemotherapy or radiation therapy or immunotherapy or targeted therapy or hormone therapy.Cancers symptoms of abnormal periods or pelvic pain, changes in bathroom habits, bloating, breast changes, chronic coughing, chronic headache, difficulty swallowing, excessing bruising. Despite the fact of having great need, the current availability of diagnostic tests is unable to diagnose different forms of cancers. Aim: The aim of the review is to explore the application of GC-MS, LC-MS and UP-LC/Q-TOF MS for the evaluation of changes in the biochemical composition of blood serum, urine and saliva. The power of high differentiation method will promote the translation of hyphenated techniques from a laboratory to clinical useful tool. Determination of biochemical information derives from hyphenated techniques from blood, serum, saliva and urine that will yield accurate and selective detection of cancer disorders. They will also provide diagnostic and prognostic indicators and will also play a significant role in the development of personalized medicine. Conclusion: Hyphenated techniques will allow differentiating blood serum, saliva and urine samples of common cancer disorders from normal control patients with sensitivity and specificity.


Cite this article:
Ch. Prudhvi Raju, G. Raveendra Babu, M. Sowjanya, M. Ramayyappa. Evaluation of Cancer Bio-markers through Hyphenated Analytical Techniques. Asian Journal of Pharmaceutical Analysis. 2021; 11(3):235-2. doi: 10.52711/2231-5675.2021.00041

Cite(Electronic):
Ch. Prudhvi Raju, G. Raveendra Babu, M. Sowjanya, M. Ramayyappa. Evaluation of Cancer Bio-markers through Hyphenated Analytical Techniques. Asian Journal of Pharmaceutical Analysis. 2021; 11(3):235-2. doi: 10.52711/2231-5675.2021.00041   Available on: https://ajpaonline.com/AbstractView.aspx?PID=2021-11-3-11


REFERENCES:
1.    Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018; 68: 394–424.
2.    Fidler M.M., Bray F., Soerjomataram I. The global cancer burden and human development: A review. Scand. J. Public Health. 2018; 46: 27–36.
3.    Richards M.A. The size of the prize for earlier diagnosis of cancer in england. Br. J. Cancer. 2009; 101(Suppl. 2): S125–S129.
4.    Bax C., Taverna G., Eusebio L., Sironi S., Grizzi F., Guazzoni G., Capelli L. Innovative diagnostic methods for early prostate cancer detection through urine analysis: A review. Cancers. 2018; 10: 123.
5.    Di Lena M., Porcelli F., Altomare D.F. Volatile organic compounds as new biomarkers for colorectal cancer: A review. Colorectal Dis. 2016; 18: 654–663.
6.    Das V., Kalita J., Pal M. Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Biomed. Pharmacother. 2017; 87: 8–19.
7.    Capelli L., Taverna G., Bellini A., Eusebio L., Buffi N., Lazzeri M., Guazzoni G., Bozzini G., Seveso M., Mandressi A., et al. Application and uses of electronic noses for clinical diagnosis on urine samples: A review. Sensors. 2016; 16: 1708.
8.    Asimakopoulos A.D., Del Fabbro D., Miano R., Santonico M., Capuano R., Pennazza G., D’Amico A., Finazzi-Agro E. Prostate cancer diagnosis through electronic nose in the urine headspace setting: A pilot study. Prostate Cancer Prostatic Dis. 2014;17: 206–211.
9.    de Meij T.G., Larbi I.B., van der Schee M.P., Lentferink Y.E., Paff T., Terhaar Sive Droste J.S., Mulder C.J., van Bodegraven A.A., de Boer N.K. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile biomarker analysis: Proof of principle study. Int. J. Cancer. 2014; 134: 1132–1138
10.    Kort S., Brusse-Keizer M., Schouwink H., De Jongh F., Citgez E., Gerritsen J.W., Van Der Palen J. Detection of small cell lung cancer by electronic nose. Eur. Respir. J. 2018; 52
11.    Peng G., Hakim M., Broza Y.Y., Billan S., Abdah-Bortnyak R., Kuten A., Tisch U., Haick H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer. 2010; 103: 542–551.
12.    Lippi G., Plebani M. Diabetes alert dogs: A narrative critical overview. Clin. Chem. Lab. Med. 2019; 57: 452–458.
13.    Jadoon S., Karim S., Akram M.R., Kalsoom Khan A., Zia M.A., Siddiqi A.R., Murtaza G. Recent developments in sweat analysis and its applications. Int. J. Anal. Chem. 2015; 2015: 7.
14.    Bosch S., Berkhout D.J., Ben Larbi I., de Meij T.G., de Boer N.K. Fecal volatile organic compounds for early detection of colorectal cancer: Where are we now? J. Cancer Res. Clin. Oncol. 2019; 145: 223–234.
15.    Rooney N.J., Guest C.M., Swanson L.C.M., Morant S.V. How effective are trained dogs at alerting their owners to changes in blood glycaemic levels? Variations in performance of glycaemia alert dogs. PLoS ONE. 2019; 14:e0210092.
16.    Elliker K.R., Sommerville B.A., Broom D.M., Neal D.E., Armstrong S., Williams H.C. Key considerations for the experimental training and evaluation of cancer odour detection dogs: Lessons learnt from a double-blind, controlled trial of prostate cancer detection. BMC Urol. 2014; 14: 22.
17.    Gordon R.T., Schatz C.B., Myers L.J., Kosty M., Gonczy C., Kroener J., Tran M., Kurtzhals P., Heath S., Koziol J.A., et al. The use of canines in the detection of human cancers. J. Altern. Complement. Med. (New York, NY) 2008; 14: 61–67.
18.    Bernabei M., Pennazza G., Santonico M., Corsi C., Roscioni C., Paolesse R., Di Natale C., D’Amico A. A preliminary study on the possibility to diagnose urinary tract cancers by an electronic nose. Sens. Actuators B Chem. 2008; 131: 1–4.
19.    Cornu J.N., Cancel-Tassin G., Ondet V., Girardet C., Cussenot O. Olfactory detection of prostate cancer by dogs sniffing urine: A step forward in early diagnosis. Eur. Urol. 2011; 59: 197–201.
20.    Fischer-Tenhagen C., Johnen D., Nehls I., Becker R. A proof of concept: Are detection dogs a useful tool to verify potential biomarkers for lung cancer? Front. Vet. Sci. 2018; 5: 52.
21.    Worapot Suntornsuk, Leena Suntornsuk, Recent applications of paper‐based point‐of‐care devices for biomarker detection, Electrophoresis, 10.1002/elps.201900258, 41, 5-6, (287-305), (2019).
22.    Yuan Li, Sihui Su, Yingzhe Zhang, Shiyao Liu, Hongyu Jin, Qianqing Zeng, Lei Cheng, Accuracy of Raman spectroscopy in discrimination of nasopharyngeal carcinoma from normal samples: a systematic review and meta-analysis, Journal of Cancer Research and Clinical Oncology, 10.1007/s00432-019-02934-y, (2019).
23.    Guoyu Jiang, Wenping Zhu, Qingqing Chen, Xinbo Li, Guanxin Zhang, Yongdong Li, Xiaolin Fan, Jianguo Wang, Selective fluorescent probes for spermine and 1-adamantanamine based on the supramolecular structure formed between AIE-active molecule and cucurbit[n]urils, Sensors and Actuators B: Chemical, 10.1016/j.snb.2018.01.197, 261, (602-607), (2018).
24.    Xin Xiong, Yuanyuan Zhang, Wenjing Zhang, Simultaneous determination of twelve polar pteridines including dihydro‐ and tetrahydropteridine in human urine by hydrophilic interaction liquid chromatography with tandem mass spectrometry, Biomedical Chromatography, 10.1002/bmc.4244, 32, 8, (2018).
25.    Jie Wang, Wei Li, Lin Ban, Wei Du, Xiaojun Feng, Bi-Feng Liu, A paper-based device with an adjustable time controller for the rapid determination of tumor biomarkers, Sensors and Actuators B: Chemical, 10.1016/j.snb.2017.07.192, 254, (855-862), (2018).
26.    Prabhpreet Singh, Lalit Singh Mittal, Gaurav Bhargava, Subodh Kumar, Ionic Self‐Assembled Platform of Perylenediimide–Sodium Dodecylsulfate for Detection of Spermine in Clinical Samples, Chemistry – An Asian Journal, 10.1002/asia.201700120, 12, 8, (890-899), (2017).
27.    Shangyuan Feng, Zuci Zheng, Yuanji Xu, Jinyong Lin, Guannan Chen, Cuncheng Weng, Duo Lin, Sufang Qiu, Min Cheng, Zufang Huang, Lan Wang, Rong Chen, Shusen Xie, Haishan Zeng, A noninvasive cancer detection strategy based on gold nanoparticle surface-enhanced raman spectroscopy of urinary modified nucleosides isolated by affinity chromatography, Biosensors and Bioelectronics, 10.1016/j.bios.2017.01.006, 91, (616-622), (2017
28.    Bennett, B.D.; Kimball, E.H.; Gao, M.; Osterhout, R.; Van Dien, S.J.; Rabinowitz, J.D. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol., 2009, 5(8), 593-599.
29.    Amantonico, A.; Urban, P.L.; Zenobi, R. Analytical techniques for single-cell metabolomics: state of the art and trends. Anal. Bioanal. Chem., 2010, 398(6), 2493-2504.
30.    Blow, N. Metabolomics: Biochemistry’s new look. Nature, 2008, 455(7213), 697-700.
31.    Griffin, J.L.; Shockcor, J.P. Metabolic profiles of cancer cells. Nat. Rev. Cancer, 2004, 4(7), 551-561.
32.    Costello, L.C.; Franklin, R.B. ‘Why do tumour cells glycolyse?’: from glycolysis through citrate to lipogenesis. Mol. Cell. Biochem., 2005, 280(1-2), 1-8.
33.    Glunde, K.; Serkova, N.J. Therapeutic targets and biomarkers identified in cancer choline phospholipid metabolism, 2006.
34.    Warburg, O. On the origin of cancer cells. Science, 1956, 123(3191), 309-314.
35.    Armitage, E.G.; Barbas, C. Metabolomics in cancer biomarker discovery: current trends and future perspectives. J. Pharm. Biomed. Anal., 2014, 87, 1-11.
36.    Patel, S.; Ahmed, S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J. Pharm. Biomed. Anal., 2015, 107, 63-74.
37.    Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal., 2014, 87, 12-25.
38.    Amann, A. Costello, Bde.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The human volatilome: Volatile Organic Compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath Res., 2014, 8(3), 034001.
39.    Zhang, T.; Watson, D.G.; Wang, L.; Abbas, M.; Murdoch, L.; Bashford, L.; Ahmad, I.; Lam, N-Y.; Ng, A.C.; Leung, H.Y. Application of holistic liquid chromatography-high resolution mass spectrometry based urinary metabolomics for prostate cancer detection and biomarker discovery. PLoS One, 2013, 8(6), e65880.
40.    Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Modern analytical techniques in metabolomics analysis. Analyst (Lond.), 2012, 137(2), 293-300.
41.    Boyland, E.; Williams, D. The estimation of tryptophan metabolites in the urine of patients with cancer of the bladder. Biochem. J., 1955, 60, p. 60(Annual General Meeting), v.
42.    Haverback, B.J.; Sjoerdsma, A.; Terry, L.L. Urinary excretion of the serotonin metabolite, 5-hydroxyindoleacetic acid, in various clinical conditions. N. Engl. J. Med., 1956, 255(6), 270-272.
43.    Monteiro, M.; Carvalho, M.; Henrique, R.; Jerónimo, C.; Moreira, N.; de Lourdes Bastos, M.; de Pinho, P.G. Analysis of volatile human urinary metabolome by solid-phase microextraction in combination with gas chromatography-mass spectrometry for biomarker discovery: application in a pilot study to discriminate patients with renal cell carcinoma. Eur. J. Cancer, 2014, 50(11), 1993-2002.
44.    Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; Dame, Z.T.; Poelzer, J.; Huynh, J.; Yallou, F.S.; Psychogios, N.; Dong, E.; Bogumil, R.; Roehring, C.; Wishart, D.S. The human urine metabolome. PLoS One, 2013, 8(9), e73076.
45.    Emwas, A-H.; Luchinat, C.; Turano, P.; Tenori, L.; Roy, R.; Salek, R.M.; Ryan, D.; Merzaban, J.S.; Kaddurah-Daouk, R.; Zeri, A.C.; Nagana Gowda, G.A.; Raftery, D.; Wang, Y.; Brennan, L.; Wishart, D.S. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics, 2015, 11(4), 872-894.
46.    Chan, E.C.Y.; Pasikanti, K.K.; Nicholson, J.K. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat. Protoc., 2011, 6(10), 1483-1499.
47.    Dudley, E.; Tuytten, R.; Lemiere, F.; Esmans, E.E.; Newton, R.P. The bioanalysis of urinary modified nucleosides by mass spectrometry: their study as potential metabolomic biomarkers of cancer development. Collect. Czech. Chem. Commun., 2015, 10, 229-233.
48.    Contrepois, K.; Jiang, L.; Snyder, M. Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)-Mass Spectrometry. Mol. Cell. Proteomics, 2015, 14(6), 1684-1695.
49.    Beckonert, O.; Keun, H.C.; Ebbels, T.M.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc., 2007, 2(11), 2692-2703.
50.    Miao, Z.; Jin, M.; Liu, X.; Guo, W.; Jin, X.; Liu, H.; Wang, Y. The application of HPLC and microprobe NMR spectroscopy in the identification of metabolites in complex biological matrices. Anal. Bioanal. Chem., 2015, 407(12), 3405-3416.
51.    Vinther, J.M.; Wubshet, S.G.; Staerk, D. NMR-based Metabolomics and Hyphenated NMR Techniques: A Perfect Match in Natural Products Research. Ethnopharmacology, 2015, 2500, 63.
52.    Arjun Patidar, S.C.Shivhare, Umesh Ateneriya, Sonu Choudhary. A Comprehensive Review on Breast Cancer. Asian J. Nur. Edu. & Research 2(1): Jan.-March 2012; Page 28-32.
53.    Sampoornam. W. Stress and Quality of Life among Breast Cancer Patients. Asian J. Nur. Edu. & Research 4(3): July- Sept., 2014; Page 325-327.
54.    Sedigheh Iranmanesh, Ala Shamsi. The Relationship between Type of Cancer and Parent's Psychosocial Risks. Asian J. Nur. Edu. and Research 4(4): Oct.- Dec., 2014; Page 495-501.
55.    Somsubhra Ghosh, Arnab Jana, Beduin Mahanti. An Updated Review on Medical Detection of Dog. Asian J. Pharm. Ana. 6(1): January- March, 2016; Page 47-52.
56.    Pramod K., Amar Deep A., Pooja K., Mahendra Singh A. An Overview: LC-MS as Tool of sample Extraction and Quantification in Bioanalytical Laboratories. Asian J. Pharm. Ana. 2020; 10(3):165-172.
57.    Banerjee S, Bonde CG, Merukar SS, Patil YR. Advanced Hyphenated Techniques in Analytical Chemistry. Asian J. Research Chem. 2(4):Oct.-Dec. 2009 page 380-387.
58.    Sarav A. Desai , Prakash S. Sukhramani, Maulik P. Suthar, Vipul P. Patel. Biological Cytotoxicity Evaluation of Sulfonamide Derivatives as Anti-Lung and Anti-Breast Cancer Activity. Asian J. Research Chem. 4(4): April, 2011; Page 671-677.
59.    Rajendra Jangde. An Overview of Resealed Erythrocyte for Cancer Therapy. Asian J. Res. Pharm. Sci. 1(4): Oct.-Dec. 2011; Page 83-92.
60.    Rayate Yogita, Shaikh Samina, Sakhare Pooja, Gandhi Jyotsana. Review on Skin Cancer. Asian J. Res. Pharm. Sci. 2018; 8(2):100-106.

Recomonded Articles:

Author(s): Dipti G. Phadtare, Pawar Amol R, R.B. Saudagar

DOI: 10.5958/2231-5675.2016.00019.3         Access: Closed Access Read More

Author(s): Srinivasa Reddy, Nirmala Nayak, Imran Ahmed, Licto Thomas, Arindam Mukhopadhyay, Saral Thangam

DOI: 10.5958/2231-5675.2016.00014.4         Access: Open Access Read More

Author(s): Rajesh B. Nawale*, Hrishikesh H. Rajput, Mayura A. Kale, Uday A. Deokate

DOI: 10.5958/2231-5675.2017.00040.0         Access: Open Access Read More

Author(s): Santosh V. Gandhi, Parag L. Khairnar1, Atul P. Chaudhari

DOI: 10.5958/2231-5675.2018.00001.7         Access: Open Access Read More

Author(s): V. Jain, Tripti Jain, Swarnlata Saraf, S. Saraf

DOI:         Access: Open Access Read More

Author(s): Shivani Watak, Swati S. Patil

DOI:         Access: Open Access Read More

Author(s): Amitkumar J. Vyas, Jayshree P. Godhaniya, Ajay I. Patel, Ashok B. Patel, Nilesh K. Patel, Alpesh Chudasama, Sunny R. Shah

DOI: 10.52711/2231-5675.2021.00028         Access: Closed Access Read More

Author(s): Somsubhra Ghosh, Arnab Jana, Beduin Mahanti

DOI: 10.5958/2231-5675.2016.00008.9         Access: Open Access Read More

Author(s): Vignesh Balaji. E, Tamil Selvan. A, Srinivasan. A, Nandhini. S

DOI: 10.5958/2231-5675.2019.00023.1         Access: Open Access Read More

Author(s): P Ravi Kumar, P Spandana, Amani Shareef, K Sahithi, N Raghavendra Babu

DOI: 10.5958/2231-5675.2019.00037.1         Access: Open Access Read More

Author(s): Pramod K., Amar Deep A., Pooja K., Mahendra Singh A.

DOI: 10.5958/2231-5675.2020.00030.7         Access: Open Access Read More

Author(s): Saravanan. R, Bharani Pandilla, Vijayageetha. R, Kavitha. M, Ashok. P

DOI: 10.5958/2231-5675.2021.00010.         Access: Open Access Read More

Author(s): Gautam R. Ramraje, Sumesh D. Patil, P. H. Patil, Amol R. Pawar

DOI: 10.5958/2231-5675.2020.00041.1         Access: Open Access Read More

Author(s): Shinde Ganesh S., P. S. Rao, R. S. Jadhav, Piyusha Kolhe, Diksha Athare

DOI: 10.5958/2231-5675.2021.00009.0         Access: Open Access Read More

Asian Journal of Pharmaceutical Analysis (AJPA) is an international, peer-reviewed journal, devoted to pharmaceutical analysis...... Read more >>>

RNI: Not Available                     
DOI: 10.5958/2231–5675 

Popular Articles


Recent Articles




Tags