Author(s):
Rajat Rana, Ajay Kumar, Rohit Bhatia
Email(s):
bhatiarohit5678@gmail.com
DOI:
10.5958/2231-5675.2020.00040.X
Address:
Rajat Rana1, Ajay Kumar1, Rohit Bhatia1,2*
1Department of Pharmaceutical Analysis, ISF College of Pharmacy (ISFCP), Moga - 142001, India.
2Research Scholar, Department of Pharmaceutical Sciences and Technology, MRSPTU, Bathinda, Punjab, 151001, India.
*Corresponding Author
Published In:
Volume - 10,
Issue - 4,
Year - 2020
ABSTRACT:
Various analytical techniques are available nowadays to quantify a substance in a sample. These techniques are based on the quantitative performance of suitable chemical reaction, the characteristic movement of a substance through a defined medium under controlled conditions, electrical measurement, and the measurement of some spectroscopic properties of the compound. Fourier transform infrared (FTIR) spectroscopic imaging with infrared array detectors has recently emerged as a powerful materials characterization tool. IR spectroscopy is a significant technique which utilizes electromagnetic radiations in the infrared region for the determination and identification of molecular structure. Infrared (IR) spectroscopy is one of the oldest and well recognized experimental techniques for the examination of proteins, food stuffs, dyes, pharmaceutical formulations, etc. In this paper, authors have compiled various quantitative applications if infrared spectroscopy for determination of pharmaceutical suspension formulations, determination of lipids and fatty acids in food stuffs, determination of dyes, etc.
Cite this article:
Rajat Rana, Ajay Kumar, Rohit Bhatia. Impact of Infra Red Spectroscopy in Quantitative Estimation: An Update. Asian J. Pharm. Ana. 2020; 10(4):218-230. doi: 10.5958/2231-5675.2020.00040.X
Cite(Electronic):
Rajat Rana, Ajay Kumar, Rohit Bhatia. Impact of Infra Red Spectroscopy in Quantitative Estimation: An Update. Asian J. Pharm. Ana. 2020; 10(4):218-230. doi: 10.5958/2231-5675.2020.00040.X Available on: https://ajpaonline.com/AbstractView.aspx?PID=2020-10-4-9
REFERENCES:
1. Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta biochimica et biophysica Sinica. 2007 Aug;39(8):549-59.
2. LC GC’s CHRO Macademy. www.chromacademy.com
3. Suslick KS. Kirk-Othmer encyclopedia of chemical technology. J. Wiley and Sons: New York. 1998;26: 517-41.
4. Guillen MD, Cabo N. Infrared spectroscopy in the study of edible oils and fats. Journal of the Science of Food and Agriculture. 1997 Sep;75(1):1-1.
5. Theophanides T. Introduction to infrared spectroscopy in life and Biomedical sciences. InInfrared Spectroscopy-Life and Biomedical Sciences 2012 Apr 25. IntechOpen.
6. Tsuboi M. Application of infrared spectroscopy to structure studies of nucleic acids. Applied spectroscopy reviews. 1970 Jan 1;3(1):45-90.
7. Gombás Á, Antal I, Szabó-Révész P, Marton S, Erõs I. Quantitative determination of crystallinity of alpha-lactose monohydrate by near infrared spectroscopy (NIRS). International journal of pharmaceutics. 2003 Apr 30;256(1-2):25-32.
8. Silva MA, Ferreira MH, Braga JW, Sena MM. Development and analytical validation of a multivariate calibration method for determination of amoxicillin in suspension formulations by near infrared spectroscopy. Talanta. 2012 Jan 30;89: 342-51.
9. Moraes LG, Rocha RS, Menegazzo LM, Araújo EB, Yukimito K, Moraes JC. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. Journal of Applied Oral Science. 2008 Apr;16(2):145-9Moraes LG, Rocha RS, Menegazzo LM, Araújo EB, Yukimito K, Moraes JC. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. Journal of Applied Oral Science. 2008 Apr;16(2):145-9.
10. Cascant MM, Breil C, Fabiano-Tixier AS, Chemat F, Garrigues S, de la Guardia M. Determination of fatty acids and lipid classes in salmon oil by near infrared spectroscopy. Food chemistry. 2018 Jan 15;239: 865-71.
11. He FJ, Chen JQ. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: differences between Chinese women and women in Western countries and possible mechanisms. Food Science and Human Wellness. 2013 Sep 1;2(3-4):146-61.
12. Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature genetics. 2010 Dec;42(12):1053.
13. Zhu Z, Chen S, Wu X, Xing C, Yuan J. Determination of soybean routine quality parameters using near‐infrared spectroscopy. Food science and nutrition. 2018 Jun;6(4):1109-18.
14. Xi Q, Jezowski S. Plant resources of Triarrhena and Miscanthus species in China and its meaning for Europe. Plant breeding and seed science. 2004;49: 63-77.
15. Clark LV, Dzyubenko E, Dzyubenko N, Bagmet L, Sabitov A, Chebukin P, Johnson DA, Kjeldsen JB, Petersen KK, Jørgensen U, Yoo JH. Ecological characteristics and in situ genetic associations for yield-component traits of wild Miscanthus from eastern Russia. Annals of botany. 2016 Jul 24;118(5):941-55.
16. Sun Q, Lin Q, Yi ZL, Yang ZR, Zhou FS. A taxonomic revision of Miscanthus sl (Poaceae) from China. Botanical Journal of the Linnean Society. 2010 Oct 1;164(2):178-220.
17. Yan J, Chen W, Luo FA, Ma H, Meng A, Li X, Zhu M, Li S, Zhou H, Zhu W, Han BI. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. Gcb Bioenergy. 2012 Jan;4(1):49-60.
18. Jin X, Chen X, Xiao L, Shi C, Chen L, Yu B, Yi Z, Yoo JH, Heo K, Yu CY, Yamada T. Application of visible and near-infrared spectroscopy to classification of Miscanthus species. PloS one. 2017 Apr 3;12(4): e0171360.
19. Pikal MJ, Lukes AL, Lang JE, Gaines K. Quantitative crystallinity determinations for β-lactam antibiotics by solution calorimetry: Correlations with stability. Journal of pharmaceutical sciences. 1978 Jun 1;67(6):767-73.
20. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. Journal of pharmaceutical sciences. 1997 Jan 1;86(1):1-2.
21. Buckton G, Darcy P. Assessment of disorder in crystalline powders—a review of analytical techniques and their application. International journal of pharmaceutics. 1999 Mar 15;179(2):141-58.
22. Hartauer KJ, Guillory JK. A comparison of diffuse reflectance FT-IR spectroscopy and DSC in the characterization of a drug-excipient interaction. Drug development and industrial pharmacy. 1991 Jan 1;17(4):617-30.
23. Hogan SE, Buckton G. The application of near infrared spectroscopy and dynamic vapor sorption to quantify low amorphous contents of crystalline lactose. Pharmaceutical research. 2001 Jan 1;18(1):112-6.
24. Vromans H, De Boer AH, Bolhuis GK, Lerk CF, Kussendrager KD, Bosch H. Studies on tableting properties of lactose. Pharmaceutisch weekblad. 1985 Oct 1;7(5):186-93.
25. Gombás Á, Antal I, Szabó-Révész P, Marton S, Erõs I. Quantitative determination of crystallinity of alpha-lactose monohydrate by near infrared spectroscopy (NIRS). International journal of pharmaceutics. 2003 Apr 30;256(1-2):25-32.
26. Dégardin K, Roggo Y, Margot P. Forensic intelligence for medicine anti-counterfeiting. Forensic science international. 2015 Mar 1; 248:15-32.
27. Dégardin K, Roggo Y, Margot P. Understanding and fighting the medicine counterfeit market. Journal of pharmaceutical and biomedical analysis. 2014 Jan 18;87: 167-75.
28. Anzanello MJ, Ortiz RS, Limberger R, Mariotti K. A framework for selecting analytical techniques in profiling authentic and counterfeit Viagra and Cialis. Forensic science international. 2014 Feb 1;235: 1-7.
29. Sammons HM, Choonara I. Substandard medicines: a greater problem than counterfeit medicines? BMJ paediatrics open. 2017;1(1).
30. WHO. Substandard, spurious, falsely labelled, falsified and counterfeit (SSFFC) medical products.
31. Sukkar E. Taking stock of counterfeit medicines. Pharm. J. 2014;292: 570.
32. Lawson G, Ogwu J, Tanna S. Quantitative screening of the pharmaceutical ingredient for the rapid identification of substandard and falsified medicines using reflectance infrared spectroscopy. PloS one. 2018 Aug 10;13(8): e0202059.
33. Sinelli N, Cerretani L, Di Egidio V, Bendini A, Casiraghi E. Application of near (NIR) infrared and mid (MIR) infrared spectroscopy as a rapid tool to classify extra virgin olive oil on the basis of fruity attribute intensity. Food research international. 2010 Jan 1;43(1):369-75.
34. Ozen BF, Mauer LJ. Detection of hazelnut oil adulteration using FT-IR spectroscopy. Journal of agricultural and food chemistry. 2002 Jul 3;50(14):3898-901.
35. Özdemir D, Öztürk B. Near infrared spectroscopic determination of olive oil adulteration with sunflower and corn oil.
36. Bendini A, Cerretani L, Carrasco-Pancorbo A, Gómez-Caravaca A, Segura-Carretero A, Fernández-Gutiérrez A, Lercker G. Phenolic molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade Alessandra. Molecules. 2007 Aug 6;12(8):1679-719.
37. Gómez-Alonso S, Fregapane G, Salvador MD, Gordon MH. Changes in phenolic composition and antioxidant activity of virgin olive oil during frying. Journal of Agricultural and Food Chemistry. 2003 Jan 29;51(3):667-72.
38. Maggio RM, Kaufman TS, Del Carlo M, Cerretani L, Bendini A, Cichelli A, Compagnone D. Monitoring of fatty acid composition in virgin olive oil by Fourier transformed infrared spectroscopy coupled with partial least squares. Food Chemistry. 2009 Jun 15;114(4):1549-54.
39. Jantra C, Slaughter DC, Liang PS, Pathaveerat S. Nondestructive determination of dry matter and soluble solids content in dehydrator onions and garlic using a handheld visible and near infrared instrument. Postharvest Biology and Technology. 2017 Nov 1;133: 98-103.
40. Sans S, Ferré J, Boqué R, Sabaté J, Casals J, Simó J. Determination of chemical properties in ‘calçot’ (Allium cepa L.) by near infrared spectroscopy and multivariate calibration. Food chemistry. 2018 Oct 1; 262:178-83.
41. Marigheto NA, Kemsley EK, Defernez M, Wilson RH. A comparison of mid-infrared and Raman spectroscopies for the authentication of edible oils. Journal of the American oil chemists’ society. 1998 Aug 1;75(8):987-92.
42. Yang H, Irudayaraj J, Paradkar MM. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry. 2005 Nov 1;93(1):25-32.
43. . Saint Cricq de Gaulejac N, Vivas N, Glories Y. Maturation phénolique des raisins rouges. Relation avec la qualité des vins. Comparaison des cépages Merlot et Tempranillo. Progrès Agricole et Viticole. 1998;115(13-14):306-18.
44. Romero-Cascales I, Ortega-Regules A, López-Roca JM, Fernández-Fernández JI, Gómez-Plaza E. Differences in anthocyanin extractability from grapes to wines according to variety. American Journal of Enology and Viticulture. 2005 Sep 1;56(3):212-9.
45. Montealegre RR, Peces RR, Vozmediano JC, Gascueña JM, Romero EG. Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. Journal of Food Composition and Analysis. 2006 Sep 1;19(6-7):687-93.
46. Fragoso S, Acena L, Guasch J, Busto O, Mestres M. Application of FT-MIR spectroscopy for fast control of red grape phenolic ripening. Journal of agricultural and food chemistry. 2011 Feb 18;59(6):2175-83.
47. Davey MW, Saeys W, Hof E, Ramon H, Swennen RL, Keulemans J. Application of visible and near-infrared reflectance spectroscopy (Vis/NIRS) to determine carotenoid contents in banana (Musa spp.) fruit pulp. Journal of agricultural and food chemistry. 2009 Feb 16;57(5):1742-51.
48. Yeum KJ, Russell RM. Carotenoid bioavailability and bioconversion. Annual review of nutrition. 2002 Jul;22(1):483-504.
49. Fraser PD, Bramley PM. The biosynthesis and nutritional uses of carotenoids. Progress in lipid research. 2004 May 1;43(3):228-65.
50. Mehlisch DR, Aspley S, Daniels SE, Bandy DP. Comparison of the analgesic efficacy of concurrent ibuprofen and paracetamol with ibuprofen or paracetamol alone in the management of moderate to severe acute postoperative dental pain in adolescents and adults: a randomized, double-blind, placebo-controlled, parallel-group, single-dose, two-center, modified factorial study. Clinical therapeutics. 2010 May 1;32(5):882-95.
51. Velasco D, Danoux CB, Redondo JA, Elvira C, San Roman J, Wray PS, Kazarian SG. pH-sensitive polymer hydrogels derived from morpholine to prevent the crystallization of ibuprofen. Journal of controlled release. 2011 Jan 20;149(2):140-5.
52. Mallah MA, Sherazi ST, Mahesar SA, Khaskheli AR. Simultaneous quantification of ibuprofen and paracetamol in tablet formulations using transmission Fourier transform infrared spectroscopy. American Journal of Analytical Chemistry. 2012 Aug 22;3(08):503.
53. Talpur MY, Sherazi ST, Mahesar SA, Naz S, Kara H. Impact of frying on key fatty acid ratios of canola oil. European journal of lipid science and technology. 2012 Feb;114(2):222-8.
54. KHASKHELI MH, Sherazi ST, Ujan HM, Mahesar SA. Transmission FT-IR spectroscopic analysis of human kidney stones in the Hyderabad region of Pakistan. Turkish Journal of Chemistry. 2012 May 25;36(3):477-83.
55. Mahesar SA, Sherazi ST, Kandhro AA, Bhanger MI, Khaskheli AR, Talpur MY. Evaluation of important fatty acid ratios in poultry feed lipids by ATR FTIR spectroscopy. Vibrational Spectroscopy. 2011 Nov 1;57(2):177-81.
56. Mallah MA, Sherazi ST, Mahesar SA, Khaskheli AR. Simultaneous quantification of ibuprofen and paracetamol in tablet formulations using transmission Fourier transform infrared spectroscopy. American Journal of Analytical Chemistry. 2012 Aug 22;3(08):503.
57. Vagenas NV, Gatsouli A, Kontoyannis CG. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta. 2003 Mar 10;59(4):831-6.
58. Adams SS, McCullough KF, Nicholson JS. The pharmacological properties of ibuprofen, an anti-inflammatory, analgesic and antipyretic agent. Archives internationales de pharmacodynamie et de therapie. 1969 Mar;178(1):115.
59. Garrigues S, Gallignani M, de la Guardia M. FIA—FT—IR determination of ibuprofen in pharmaceuticals. Talanta. 1993 Jan 1;40(1):89-93.
60. Matkovic SR, Valle GM, Briand LE. Quantitative analysis of ibuprofen in pharmaceutical formulations through FTIR spectroscopy. Latin American applied research. 2005 Jul;35(3):189-95.