Author(s):
Pankaj Thakur, Upasana Thakur, Pooja Kaushal, Amar Deep Ankalgi, Pramod Kumar, Aman Kapoor, Mahendra Singh Ashawat
Email(s):
thakurpankajsingh41@gmail.com
DOI:
10.52711/2231-5675.2021.00049
Address:
Pankaj Thakur*, Upasana Thakur, Pooja Kaushal, Amar Deep Ankalgi, Pramod Kumar, Aman Kapoor, Mahendra Singh Ashawat
Department of Pharmaceutical Analysis and Quality Assurance, Laureate Institute of Pharmacy, Kathog, Jawalaji.
*Corresponding Author
Published In:
Volume - 11,
Issue - 4,
Year - 2021
ABSTRACT:
The hyphenated technique is developed from the coupling of a separation technique and an on-line spectroscopic detection technology, GCMS, LC-MS, LC-FTIR, LC-NMR, and CE-MS. Gas chromatography combined with mass spectrometry is an important technique for identification and quantification of analytes in multifactor systems. GC-MS is highly effective and versatile analytical techniques with numerous scientific applications to cater the field of applied Sciences and Technology. This review elaborates the significant uses of this technique. It includes a brief discussion of the instrumental set-up and theory for the comprehensive GC × GC hyphenated with different detection techniques. It is fast and sensitive, provides a high peak capacity, and allows determination of thermally stable and volatile compounds.
Cite this article:
Pankaj Thakur, Upasana Thakur, Pooja Kaushal, Amar Deep Ankalgi, Pramod Kumar, Aman Kapoor, Mahendra Singh Ashawat. A Review on GC-MS Hyphenated Technique. Asian Journal of Pharmaceutical Analysis. 2021; 11(4):285-2. doi: 10.52711/2231-5675.2021.00049
Cite(Electronic):
Pankaj Thakur, Upasana Thakur, Pooja Kaushal, Amar Deep Ankalgi, Pramod Kumar, Aman Kapoor, Mahendra Singh Ashawat. A Review on GC-MS Hyphenated Technique. Asian Journal of Pharmaceutical Analysis. 2021; 11(4):285-2. doi: 10.52711/2231-5675.2021.00049 Available on: https://ajpaonline.com/AbstractView.aspx?PID=2021-11-4-7
REFERENCES:
1. Ruchira chin Hole et.al. Recent Applications of Hyphenated Liquid Chromatography Techniques. International Journal of Pharmaceutical Sciences Review and Research: 2012, 14(1); 57-63.
2. PallaviPhalke et.al. International Journal of Chemical Studies Review on Hyphenated Techniques 2013; 1(3): 157-164.
3. D.R. Jenke, “Chromatographic Method Validation: A review of Current Practices and Procedures. I. General Concepts and Guidelines”, J. Liq. Chrom. And Rel.Technol. vol. 19 (1996), pp. 719-736. SWGDRG, Quality Assurance/General Practices Recommendations, 2008.
4. A.G. Rowley. Evaluating Uncertainty for Laboratories, A Practical Handbook (version 1.1, 2001).
5. Wilson I. D. and Brinkman U. A. T. Hyphenation and hypernation. Journal of Chromatography A. 2003; 1000(1-2): 325-356. doi:10.1016/s0021-9673(03)00504-1
6. Sahil K. Prashant B. Akanksha M. Premjeet S, Devashish R. GC-MS: Applications. International Journal Pharmaand Biological Archives. 2011; 2: 1544-1560.
7. Jenke, D. R. Chromatographic Method Validation: A Review of Current Practices and Procedures. I. General Concepts and Guidelines. Journal of Liquid Chromatography and Related Technologies. 1996; 19(5): 719–736. doi:10.1080/ 1082607960800553
8. Londhe SV. Mulgund SV. Chitre TS. Mallade PS. Barival JB. Jain KS.et al Hyphenated Techniques in Analytical World, Indian J Pharm EducRes Dec 2008; 42(4).
9. International Organization for Standardization (2002) Quality Management Systems-Fundamentals and Vocabulary. ISO 9000: 2000(E).
10. ISO/IEC 17025 (2005) General Requirements for Competence of Testing and Calibration Laboratories. Paragraphs 5.5-5.6.
11. Patel K. N. Patel J. K. Patel M. P. Rajput G. C. and Patel, H. A. et al Introduction to Hyphenated Techniques and their Applications in Pharmacy. Pharmaceutical Methods. 2010; 1(1): 2–13. doi:10.1016/s2229-4708(10)11002-4
12. Wilson I. D. and Brinkman U. A. T. Hyphenation and hypernation. Journal of Chromatography A. 2003; 1000(1-2): 325–356. doi:10.1016/s0021-9673(03)00504-1
13. De Boer J. Capillary Gas Chromatography for the Determination of Halogenated Micro-contaminants. Journal of Chromatography A. 1999; 843(1-2): 179–198. doi:10.1016/s0021-9673(99)00123-5
14. Sacks R. Smith H. Nowak M. Peer et al High-speed Gas Chromatography. Analytical Chemistry. 1998; 70(1): 29A–37A. doi:10.1021/ac981715b
15. Snyder A. P. Maswadeh W. M. Tripathi A. Dworzanski J. P. et al Detection of Gram-negativeErwinia Herbicola Outdoor Aerosols with Pyrolysis-gas Chromatography/ion-mobility Spectrometry. Field Analytical Chemistry and Technology. 2000; 4(2-3): 111–126. doi:10.1002/1520-6521(2000)4:2/3<111::aid-fact5>3.0.co;2-a
16. Santos F. and Galceran M. The application of Gas Chromatography to Environmental Analysis. TrAC Trends in Analytical Chemistry. 2002; 21(9-10): 672–685. doi:10.1016/ s0165-9936(02)00813-0
17. Van Ruth S. M. Methods for Gas Chromatography-olfactometry: A Review. Biomolecular Engineering. 2001; 17(4-5): 121–128. doi:10.1016/s1389-0344(01)00070-3
18. Holley K. Pennington M. and Phillips P. Gas Chromatography in Food Analysis: an Introduction. Nutrition and Food Science. 1995; 95(5): 10–12. doi:10.1108/00346659510093973
19. Wedad Q. AL-BukhaitiEt. Al. Gas Chromatography: Principles, Advantages and Applications in Food Analysis International Journal of Agriculture Innovations and Research Volume 6(1): ISSN (Online) 2319-1473
20. Mohammed Y. H. Ghaidaa J. M. and Imad H. H. et al Analysis of Bioactive Chemical Compounds of Nigella Sativa using Gas Chromatography-mass Spectrometry. Journal of Pharmacognosy and Phytotherapy. 2016; 8(2): 8–24. doi:10.5897/jpp2015.0364
21. Robert P. Dr. Adams Identification of Essential Oil Components by Gas Chromatography/Mass spectrometry. 4th edition, Allured Pub Corp.2007;
22. Ruchira C.H. et alRecent Applications of Hyphenated Liquid Chromatography Techniques. International Journal of Pharmaceutical Sciences Review and Research: 2012; 14(1); 57-63.
23. PallaviPhalke et.al. International Journal of Chemical Studies Review on Hyphenated Techniques 2013; 1(3): 157-164.
24. Sheetal V. Patil* et al. World Journal of Pharmaceutical Research 4(2): 214-225. ISSN 2277–7105 pg no: 217-218 Shree Sureshdada Jain Institute of Pharmaceutical Education and Research, Jamner.
25. Kalpesh n Patel, et.al. Introduction to hyphenated techniques and their applications in pharmacy Pharm Methods. 2010; 1(1): 2–13. doi: 10.4103/2229-4708.72222
26. M. Hamdan, ET. Al. Capillary Electrophoresis Mass Spectrometry GlaxoWellcome Medicines Research Centre, Verona, Italy. P. G. Righetti, et.al University of Verona, Verona, Italy Copyright 2000 Academic Press.
27. Pharmaceutical Analysis Modern Methods, W.MUNSON Part A 2001 Edition.
28. Wong Y. F. Uekane T. M. Rezende C. M. Bizzo H. R. Marriott P. J. et alQualitative Analysis of Copaifera Oleoresin using Comprehensive Two-dimensional Gas Chromatography and Gas Chromatography with CClassical and Cold Electron Ionisation Mass Spectrometry. Journal of Chromatography A. 2016; 1477: 91–99. doi:10.1016/j.chroma.2016.11.038
29. Amirav A. Keshet U. Danon A. et alSoft Cold EI - Approaching Molecular Ion only with Electron Ionization. Rapid Communications in Mass Spectrometry. 2015; 29(21): 1954–1960. doi:10.1002/rcm.7305
30. Lau H. Liu S. Q. Tan L. P. Lassabliere B. Sun J. and Yu B. et al A Systematic Study of Molecular Ion Intensity and Mass Accuracy in Low Energy Electron Ionisation Using Gas Chromatography-quadrupole Time-of-flight Mass Spectrometry. Talanta. 2019; 199: 431–441. doi:10.1016/j.talanta.2019.02.089
31. Huber J. F. K. Matisova E. Kenndler E. et al Effects of Column Parameters on Optimization of Gas Chromatography/mass Spectrometry. Analytical Chemistry. 1982; 54(8): 1297–1304. doi:10.1021/ac00245a010
32. Levitas M. P. Andrews E. Lurie I. Marginean I. et al Discrimination of Synthetic Cathinones by GC–MS and GC–MS/MS Using Cold Electron Ionization. Forensic Science International. 2018; 288: 107–114. doi:10.1016/ j.forsciint.2018.04.026
33. Cappiello A. Famiglini G. Pierini E. Palma P. Trufelli H. et alAdvanced Liquid Chromatography−Mass Spectrometry Interface Based on Electron Ionization. Analytical Chemistry. 2007; 79(14): 5364–5372. doi:10.1021/ac070468l
34. Rigano F. Albergamo A. Sciarrone D. Beccaria M. Purcaro G. Mondello L. et alNano Liquid Chromatography Directly Coupled to Electron Ionization Mass Spectrometry for Free Fatty Acid Elucidation in Mussel. Analytical Chemistry. 2016; 88(7): 4021–4028. doi:10.1021/acs.analchem.6b00328
35. Albergamo A. Rigano F. Purcaro G. Mauceri A. Fasulo S. Mondello L. et al Free Fatty Acid Profiling of Marine Sentinels by NanoLC-EI-MS for the Assessment of Environmental Pollution Effects. Science of The Total Environment. 2016; 571: 955–962. doi:10.1016/j.scitotenv.2016.07.082
36. Palma P. Famiglini G. Trufelli H. Pierini E. Termopoli V. Cappiello A. et al Electron Ionization in LC-MS: Recent Developments and Applications of the Direct-EI LC-MS Interface. Analytical and Bioanalytical Chemistry. 2011; 399(8): 2683–2693. doi:10.1007/s00216-010-4637-0
37. Chernushevich I. V. Loboda A. V. Thomson B. A. et alAn Introduction to Quadrupole-time-of-flight Mass Spectrometry. Journal of Mass Spectrometry. 2001; 36(8): 849–865. doi:10.1002/ jms.207
38. Amitkumar J. Vyas Jayshree P. Godhaniya Ajay I. Patel Ashok B. Patel Nilesh K. Patel Alpesh Chudasama Sunny R. Shah. et al A Review on Carcinogenic Impurities Found in Marketed Drugs and Strategies for its Determination by Analytical Methods. Asian Journal of Pharmaceutical Analysis. 2021; 11(2): 159-9. doi: 10.52711/2231-5675.2021.00028
39. Cornish, T. J. and Bryden W. A. “Miniature Time-of-Flight Mass Spectrometer for a Field-Portable Biodetection System,” Johns Hopkins APL Tech. Dig. 1999; 20(3): 335–342.
40. Cotter R. J. “Time-of-Flight Mass Spectrometry: Instrumentation and Applications in Biological Research,” Chap. 2, in ACS Professional Reference Books, American Chemical Society, Washington, DC, pp. 19–45 (1997).
41. Cornish T J. Ecelberger S. and BrinckerhofF W. Miniature Time-of-flightMass Spectrometer using a Flexible Circuitboard Reflector. Rapid Communications in Mass Spectrometry. 2000; 14(24): 2408–2411. doi:10.1002/1097-0231(20001230)14: 24<2408::aid-rcm181>3.0.co;2-k
42. Biswas S. Kelly I. Chia V. K. F., Lindley P. Edgell M. J. (n.d.) et al. A review of Analytical Techniques for Process Control of Contaminants Introduced During ion Implantation. International Conference on Ion Implantation Technology. Proceedings (Cat. No.98EX144). 1998; doi:10.1109/iit.1999.812194
43. J. R. De Laeter in D. M. Desiderio and N. M. M. Nibbering, eds. Applications of Inorganic Mass Spectrometry, Wiley Interscience Series on Mass Spectrometry, John Wiley and sons, Inc., 2001.
44. Fagerquist C. K. Neese R. A. Hellerstein M. K. et alMolecular Ion Fragmentation and its Effects on Mass Isotopomer Abundances of Fatty Acid Methyl Esters Ionized by Electron Impact. Journal of the American Society for Mass Spectrometry. 1999; 10(5): 430–439. doi:10.1016/s1044-0305(99)00003-3
45. Ramasubramaniaraja R., Pharmacognostical Phytochemical Including GC-MS Investigation of Ethanolic Leaf Extracts of Abutilon indicum (Linn). Asian J. Pharm. Ana. 2011; 1(4); 88-92.
46. Ganem B. Li Y. T. Henion J. D. et al Detection of Noncovalent Receptor-Ligand Complexes by Mass Spectrometry. Journal of the American Chemical Society. 1991; 113(16): 6294–6296. doi:10.1021/ja00016a069
47. Backe C. Cousins I. T. Larsson, P. et alPCB in Soils and Estimated Soil–Air Exchange Fluxes of Selected PCB Congeners in the South of Sweden. Environmental Pollution. 2004; 128(1-2): 59–72. doi:10.1016/j.envpol.2003.08.038
48. Vetter W. Weichbrodt M. Stoll E. et al Indication of Geographic Variations of Organochlorine Concentrations in the Blubber of Antarctic Weddell Seals (Leptonychotes Weddelli). Environmental Science and Technology. 2003; 37(5): 840–844. doi:10.1021/ es025949v
49. Poole, C. F., and Zlatkis, A. Trialkylsilyl Ether Derivatives (Other Than TMS) for Gas Chromatography and Mass Spectrometry. Journal of Chromatographic Science. 1979; 17(3): 115–123. doi:10.1093/chromsci/17.3.115
50. Ramasubramaniaraja R. Pharmacognostical Phytochemical Including GC-MS Investigation of Ethanolic Leaf Extracts of Abutilon indicum (Linn). Asian J. Pharm. Ana. 2011; 1(4): 88-92.
51. E. Rajabudeen Ganthi A. Saravana. M. Padma S. Subramanian. et al GC-MS Analysis of the Methanol Extract of Tephrosia villosa (L.) Pers. Asian J. Research Chem. 2012; 5(11): 1331-1334.doi:10.5958/0974-4150.2017.00030.X
52. Moore, J. M. The Application of Derivatization Techniques in Forensic Drug Analysis. In“Instrumental Applications InForensic Drug Chemistry”. Pp1978. 180- 201.
53. Kumari C. Deepalakshmi J. Qualitative and GC-MS Analysis of Phytoconstituents of Parthenium hysterophorus Linn. Res. J. Pharmacognosy and Phytochem. 2017; 9(2): 105-110.doi: 10.5958/0975-4385.2017.00019.X
54. Kulkarni A. Jan N. Nimbarte S. GC-MS, FT-IR and NMR Spectroscopy Analysis for Metabolome Profiling of Thyme Oil. Asian J. Research Chem. 2013; 6(10): 945-949.
55. Dawson L. A. and Hillier S. Measurement of soil characteristics for forensic applications. Surface and Interface Analysis. 2010; 42(5): 363–377. doi:10.1002/sia.3315
56. J. S. Allwood N. Fierer R. R. Dunn M. Breen B. J. Reich E. B. Laber J. Clifton N. S. Grantham S. A. et al Faith. Use of Standardized Bioinformatics for The Analysis of Fungal DNA Signatures Applied to Sample Provenance, For. Sci. Int. 310 (2020) 110250.
57. Amitkumar J. Vyas Jayshree P. Godhaniya Ajay I. Patel Ashok B. Patel Nilesh K. Patel Alpesh Chudasama, Sunny R. Shah. et al A Review on Carcinogenic Impurities Found in Marketed Drugs and Strategies for its Determination by Analytical Methods. Asian Journal of Pharmaceutical SAnalysis. 2021; 11(2): 159-9. doi: 10.52711/2231-5675.2021.00028
58. Calhoun S. R. Wesson D. R. Galloway G. P. Smith, D. E et al Abuse of Flunitrazepam (Rohypnol) and Other Benzodiazepines in Austin and South Texas. Journal of Psychoactive Drugs.1996; 28(2): 183–189. doi:10.1080/02791072.1996.10524390
59. International Narcotics Control Strategy Report - Volume 1: Drug and Chemical Control, Bureau for International Narcotics and Law Enforcement Affairs, 2016
60. Stojanovska N. Fu S. Tahtouh M. Kelly T. Beavis A. Kirkbride K. P. et al A Review of Impurity Profiling and Synthetic Route of Manufacture of Methylamphetamine, 3,4-Methylenedioxymethylamphetamine, amphetamine, Dimethylamphetamine And p-methoxyamphetamine.Foren sic Science International. 2013; 224(1-3): 8–26. doi:10.1016/ j.forsciint.2012.10.040
61. WADA, Endogenous Anabolic Androgenic Steroids: Measurement and Reporting, Technical Document TD2018 EAAS, 2018.
62. Protti, M. Rudge, J. Sberna, A. E. Gerra, G. Mercolini L. et al Dried haematic microsamples and LC–MS/MS for the analysis of natural and synthetic cannabinoids. Journal of Chromatography B. 2017; 1044-1045: 77–86. doi:10.1016/j.jchromb.2016.12.038
63. De Albuquerque Cavalcanti, G. Rodrigues L. M. dos Santos L. Zheng X. Gujar A. Cole J. de Aquino Neto F. R. et al Non-targeted Acquisition Strategy for Screening Doping Compounds Based on GC-EI-hybrid Quadrupole-Orbitrap Mass Spectrometry: A focus on exogenous anabolic steroids. Drug Testing and Analysis. 2017; 10(3): 507–517. doi:10.1002/dta.2227
64. D.N. Correa E.M. Schmidt M.F. Franco J.J. Zacca W.F. de Carvalho Rocha A. de Paula Barbosa R. Borges W. de Souza M.N. Eberlin et al Analyzing Brazilian Driver’s License Authenticity by Easy Ambient Sonic-Spray Ionization Mass Spectrometry. Am. J. Anal. Chem. 2016; 07: 342-350. doi: 10.4236/ajac.2016.74032
65. Kilimozhi D Parthasarathy V Manavalan R. et al Active Principles Determination by GC/MS in Delonix Elata and Clerodendrum Phlomidis. Asian J. Research Chem. 2009; 2(3): 344-348.
66. D. Noort and R.M. Black M. Mesilaakso (Ed.), Chemical Weapons Convention Related Analysis, John Wiley and Sons Ltd. Chichester. 2005; p. 433.
67. B.R. Capacio J.R. Smith, R.K. Gordon, J.R. Haigh J.R. Barr B.J. Lukey in: J.A. Romano B.J. Lukey H. Salem (Eds.) el al ChemicalWarfare Agents: Chemistry, Pharmacology, Toxicology and Therapeutics, CRC Press, Boca Raton. 2008; p. 501
68. Saini M. K. Mishra S. Alam S. Thakur L. K. Singh O. Raza S. K. et al Method Development and Validation of Multiclass Pesticide Residues and Metabolites in Wheat by GC-ECD and GC-MS. Asian J. Research Chem. 2016; 9(1): 13-21. doi: 10.5958/0974-4150.2016.00003.1
69. Ruhila A. Srivastava A.Yadav P. Galib R. Prajapati P.K. et al Preliminary GC-MS profiling of Bhallataka Oil. Asian J. Research Chem. 2021; 14(2): 108-110. doi: 10.5958/0974-4150.2021.00019.5
70. Feas C. Alonso, M. Penavazquez, E. Hermelo P. Bermejobarrera P. et al Phthalates Determination in Physiological Ssaline Solutions by HPLC–ES-MS. Talanta. 2008; 75(5), 1184–1189. doi:10.1016/j.talanta.2008.01.019
71. Jose B. E. and Selvam P.P. Identification of Phytochemical Constituents in the Leaf Extracts of Azima tetracantha Lam using Gas Chromatography-Mass Spectrometry (GC-MS) analysis and Antioxidant Activity. Asian J. Research Chem. 2018; 11(6): 857-862. doi: 10.5958/0974-4150.2018.00150.5
72. Zhang F. Kaiser R. I. Kislov V. V. Mebel A. M. Golan, A. and Ahmed M. (2011). A VUV Photoionization Study of the Formation of the Indene Molecule and Its Isomers. The Journal of Physical Chemistry Letters. 2011: 2(14): 1731–1735. doi:10.1021/ jz200715u
73. Speck. A. K. Thompson G. D. Hofmeister A. M. et al. The Effect of Stellar Evolution on SiC Dust Grain Sizes. The Astrophysical Journal. 2006; 634(1): 426. doi:10.1086/496955