Author(s):
Hitesh C. Shelar, Ganesh B. Sonawane, Vijayaraj N. Sonawane, Sunil K. Mahajan, Dipak D. Sonawane, Rushikesh L. Bachhav, Chetana G. Ahire
Email(s):
hiteshshelarhsht24@gmail.com
DOI:
10.52711/2231-5675.2026.00009
Address:
Hitesh C. Shelar1, Ganesh B. Sonawane1, Vijayaraj N. Sonawane1, Sunil K. Mahajan2, Dipak D. Sonawane3, Rushikesh L. Bachhav1, Chetana G. Ahire1
1Department of Quality Assurance, SSS’s Divine College Pharmacy, Nampur Road, Satana, Nashik, India.
2Department of Chemistry, SSS’s Divine College Pharmacy, Nampur Road, Satana, Nashik, India.
3Department of Pharmaceutics, SSS’s Divine College Pharmacy, Nampur Road, Satana, Nashik, India.
*Corresponding Author
Published In:
Volume - 16,
Issue - 1,
Year - 2026
ABSTRACT:
Green Quality Assurance (GQA) in sustainable pharmaceuticals is an integrated approach that embeds environmental sustainability at every stage of traditional quality assurance. As the definition of quality widens to encompass customer satisfaction, regulatory compliance, and value for money, GQA ensures that medicines are not only safe and effective but also produced and distributed with minimal environmental impact. This involves the efficient use of resources, energy conservation, waste minimization, and life cycle assessments to evaluate the health and environmental impacts of pharmaceutical processes. Companies that combine sustainability with quality management gain several advantages, including resource optimization, streamlined compliance, continuous improvement, and risk mitigation. The holistic integration of sustainability and safety recognizes the interconnectedness of worker well-being and environmental stewardship. Strategies such as eco-design, green chemistry, atom economy, and sustainable sourcing further enhance product longevity and lower the carbon footprint. The use of recyclable materials, packaging reduction, reusable containers, and green logistics also contributes to environmental benefits across the supply chain. Effective waste control and sustainable manufacturing practices, such as green synthesis and continuous flow processes, reduce hazardous byproducts and maximize atom economy, ensuring that more raw materials are utilized in finished products rather than becoming waste. The regulatory complexity in this sector calls for coherent, globally harmonized standards that balance safety, accountability, and practical enforceability. Real-time data integration aids fast and informed decision-making. The GQA offers substantial environmental benefits by reducing pollution and resource consumption, while fostering industry-wide collaboration, innovation, and stakeholder trust to promote sustainable and responsible pharmaceutical production.
Cite this article:
Hitesh C. Shelar, Ganesh B. Sonawane, Vijayaraj N. Sonawane, Sunil K. Mahajan, Dipak D. Sonawane, Rushikesh L. Bachhav, Chetana G. Ahire. Green Quality Assurance for Sustainable Pharmaceuticals. Asian Journal of Pharmaceutical Analysis. 2026; 16(1):57-9. doi: 10.52711/2231-5675.2026.00009
Cite(Electronic):
Hitesh C. Shelar, Ganesh B. Sonawane, Vijayaraj N. Sonawane, Sunil K. Mahajan, Dipak D. Sonawane, Rushikesh L. Bachhav, Chetana G. Ahire. Green Quality Assurance for Sustainable Pharmaceuticals. Asian Journal of Pharmaceutical Analysis. 2026; 16(1):57-9. doi: 10.52711/2231-5675.2026.00009 Available on: https://ajpaonline.com/AbstractView.aspx?PID=2026-16-1-9
REFERENCES:
1. Reeves C, Bednar D. Defining quality: alternatives and implications. Acad Manag Rev. 1994; 19: 419–45. doi:10.5465/AMR.1994.9412271805.
2. Golder P, Mitra D, Moorman C. What is quality? An integrative framework of processes and states. J Mark. 2012; 76:1–23. doi:10.1509/jm.09.0416.
3. Patil D, Patil D, Pati S. A review on introduction to quality assurance. Res J Pharmacol Pharmacodyn. 2023. doi:10.52711/2321-5836.2023.00015.
4. Jadhav V, Purkar A, Dukale N, Gaikwad B, Jadhav D. An overview of quality assurance and quality control. Int J Multidiscip Res. 2025. doi:10.36948/ijfmr.2025.v07i02.37929.
5. Jiménez-González C, Lund C. Green metrics in pharmaceutical development. Curr Opin Green Sustain Chem. 2021. doi:10.1016/j.cogsc.2021.100564.
6. Nahas N, Chandrasekar K. Total quality management in pharmaceutical industry: with respect to green innovation. 2019; 21:242–8.
7. Jum’a L, Alkalha Z, Mandil K, Alaraj M. Exploring the influence of lean manufacturing and total quality management practices on environmental sustainability: the moderating role of quality culture. Int J Lean Six Sigma. 2023. doi:10.1108/ijlss-11-2021-0203.
8. Rosen M, Kishawy H. Sustainable manufacturing and design: concepts, practices and needs. Sustainability. 2012; 4:1–21. doi:10.3390/SU4020154.
9. Mortimer F, Isherwood J, Wilkinson A, Vaux E. Sustainability in quality improvement: redefining value. Future Healthc J. 2018; 5:88–93. doi:10.7861/futurehosp.5-2-88.
10. Utomo B, Wisudawati T. Development of an integrative model for occupational health and safety and environmental science in sustainable energy technology. Power Syst Technol. 2025. doi:10.52783/pst.1625.
11. Haouat Z, Essalih S, Bennouna F, Amegouz D. Development of a global framework for an integrated life cycle assessment (LCA) model in QSE management systems. Sustainability. 2025. doi:10.3390/su17083521.
12. Wang D. Assessing road transport sustainability by combining environmental impacts and safety concerns. Transp Res D Transp Environ. 2019; 77:212–23. doi:10.1016/j.trd.2019.10.022.
13. Fadly D. Greening industry in Vietnam: environmental management standards and resource efficiency in SMEs. Sustainability. 2020; 12:7455. doi:10.3390/su12187455.
14. Hafez F, Sa'di B, Safa-Gamal M, Taufiq-Yap Y, Alrifaey M, Seyedmahmoudian M, et al. Energy efficiency in sustainable buildings: a systematic review. Energy Strategy Rev. 2023. doi:10.1016/j.esr.2022.101013.
15. Alola A, Özkan O, Usman O. Role of non-renewable energy efficiency and renewable energy in driving environmental sustainability in India. Energies. 2023. doi:10.3390/en16062847.
16. Bhagat J, Singh N, Shimada Y. Southeast Asia’s environmental challenges: emergence of new contaminants and advancements in testing methods. Front Toxicol. 2024; 6. doi:10.3389/ftox.2024.1322386.
17. Ondrašek G, Shepherd J, Rathod S, Dharavath R, Rashid M, Brtnický M, et al. Metal contamination – a global environmental issue: sources, implications and advances in mitigation. RSC Adv. 2025; 15:3904–27. doi:10.1039/d4ra04639k.
18. Han Y, Ceross A, Bergmann J. More than red tape: exploring complexity in medical device regulatory affairs. Front Med. 2024; 11. doi:10.3389/fmed.2024.1415319.
19. Villiers C. New directions in the EU’s regulatory framework for corporate reporting. Eur J Risk Regul. 2022; 13:548–66. doi:10.1017/err.2022.25.
20. Godwin A, Langford R. Corporations, financial services and charities: regulatory complexity and coherence. SSRN Electron J. 2024. doi:10.2139/ssrn.4688082.
21. Panetto H, Iung B, Ivanov D, Weichhart G, Wang X. Challenges for the cyber-physical manufacturing enterprises of the future. Annu Rev Control. 2019; 47:200–13. doi:10.1016/J.ARCONTROL.2019.02.002.
22. Müller J, Kiel D, Voigt K. What drives the implementation of Industry 4.0? Sustainability. 2018; 10:247. doi:10.3390/SU10010247.
23. Saniuk S, Grabowska S, Gajdzik B. Social expectations and market changes in developing the Industry 4.0 concept. Sustainability. 2020. doi:10.3390/su12041362.
24. Bonilla S, Silva H, Da Silva M, Gonçalves R, Sacomano J. Industry 4.0 and sustainability implications: a scenario-based analysis. Sustainability. 2018. doi:10.3390/SU10103740.
25. Dewberry E, Cook M. Sustainability by design: a subversive strategy. Int J Sustain Eng. 2010; 3:229. doi:10.1080/19397038.2010.484895.
26. Cespi D, Beach E, Swarr T, Passarini F, Vassura I, Dunn P, et al. Life cycle inventory improvement in the pharmaceutical sector. Green Chem. 2015; 17:3390–400. doi:10.1039/C5GC00424A.
27. Mengistu A, Dieste M, Panizzolo R, Biazzo S. Sustainable product design factors: a comprehensive analysis. J Clean Prod. 2024. doi:10.1016/j.jclepro.2024.142260.
28. Hapuwatte B, Jawahir I. Closed-loop sustainable product design for circular economy. J Ind Ecol. 2021; 25:1430–46. doi:10.1111/jiec.13154.
29. Go T, Wahab D, Hishamuddin H. Multiple generation life-cycles for product sustainability. J Clean Prod. 2015; 95:16–29. doi:10.1016/J.JCLEPRO.2015.02.065.
30. Badioli S, Champion T, Dargaud M, Roumiguier L, Léonard A. Life cycle assessment and eco design: towards optimized refractory materials for green steelmaking. In: XVIII EcerS Conf. 2023.
31. Meyers R, Anastas P, Zimmerman J. Green chemistry and chemical engineering. 2013; 1–4. doi:10.1007/978-1-4614-5817-3_1.
32. Jain S, Awasthi A, Gupta A. Green chemistry: a sustainable path to environmental responsibility. Asian J Res Pharm Sci. 2024. doi:10.52711/2231-5659.2024.00008.
33. Savitskaya T, Kimlenka I, Lu Y, Hrynshpan D, Sarkisov V, Yu J, et al. Applications of green chemistry. Green Chem. 2021. doi:10.1007/978-981-16-3746-9_3.
34. Penido R, Nunes R, Santos E. Sustainable solvents for chemical processes. Rev Virtual Quim. 2022. doi:10.21577/1984-6835.20220085.
35. Gómez-López P, Puente-Santiago A, Castro-Beltrán A, Nascimento L, Balu A, Luque R, et al. Nanomaterials and catalysis for green chemistry. Green Sustain Chem. 2020; 24:48–55. doi:10.1016/j.cogsc.2020.03.001.
36. Seretis A, Mertika I, Gabrielatou E, Patatsi E, Thanou I, Diamantopoulou P, et al. Novel hydrogenation reaction of renewable furfural into furfuryl alcohol. Catal Today. 2024. doi:10.1016/j.cattod.2024.115019.
37. Varma R. Greener and sustainable chemistry. Appl Sci. 2014; 4:493–7. doi:10.3390/APP4040493.
38. Weitzel J, Venema J, Devine J, Workman W, Mahlangu GN, Emrick S, et al. Understanding quality paradigm shifts in the evolving pharmaceutical landscape. AAPS J. 2021; 23(6). doi:10.1208/s12248-021-00634-5.
39. Friedli T, Goetzfried M, Basu P. Implementation of TPM, TQM, and JIT in pharmaceutical manufacturing. J Pharm Innov. 2010; 5(4):181–92. doi:10.1007/s12247-010-9095-x.
40. Ivanov D. Revealing interfaces of supply chain resilience and sustainability. Int J Prod Res. 2017; 56(10): 3507–23. doi:10.1080/00207543.2017.1343507.
41. Xu Y, Zhang W, Li Y, Zhang Y. Intelligent pest detection and recognition based on deep learning. Comput Electron Agric. 2022; 193:106653. https://doi.org/10.1016/j.compag.2022.106653
42. Liu B, Sun X, Ma J, He Y. Real-time pest recognition system based on deep convolutional neural networks. Front Plant Sci. 2022; 13:870431. https://doi.org/10.3389/fpls.2022.870431
43. Ahmed U, Saeed M, Rehman A, Nawaz M, Shabbir M, Kim DS. Pest recognition from agricultural images using deep learning models: a review. Agronomy. 2023; 13(2):382. https://doi.org/10.3390/agronomy13020382
44. Zhao J, Zhang D, Jin J, Zhang Y. Automatic insect pest detection and classification in crop fields using UAV imagery and YOLOv5. Remote Sens. 2023; 15(4):992. https://doi.org/10.3390/rs15040992
45. Sun C, Ma Y, Wang J, Qiao Y. Lightweight pest detection using MobileNet-SSD for edge computing. Comput Electron Agric. 2023; 207:107650. https://doi.org/10.1016/j.compag.2023.107650
46. Hameed K, Chai D, Rassau A. Machine vision for automatic pest detection and monitoring in agriculture: a survey. Comput Electron Agric. 2021; 184:106067. https://doi.org/10.1016/j.compag.2021.106067
47. Wu X, Zhao L, Xu Y. A hybrid deep learning framework for pest recognition using hyperspectral imagery. Sensors. 2022; 22(15):5772. https://doi.org/10.3390/s22155772
Chen H, Li H, Zhang Y. Development of pest monitoring systems based on Internet of Things (IoT) and image processing. Agriculture. 2022; 12(9):1395. https://doi.org/10.3390/agriculture12091395
48. Patel K, Ghosh S, Dey N. Image-based smart pest management using deep learning models. Neural Comput Appl. 2022; 34:13913–13928. https://doi.org/10.1007/s00521-022-07521-y
49. Wang L, Wang Y, Zhang Q. Deep learning and image processing for pest control: current trends and future directions. Comput Electron Agric. 2023; 205:107588. https://doi.org/10.1016/j.compag.2023.107588
50. Li J, Zhang C, Xue Y. Automatic pest detection and control using drone and AI integration. Agric Syst. 2024; 212:103987. https://doi.org/10.1016/j.agsy.2024.103987
51. Sharma R, Kumar V, Singh A. Early detection of crop pest infestation using multispectral drone imaging. Precis Agric. 2023; 24(6):1653–1669. https://doi.org/10.1007/s11119-023-09961-y
52. Kim J, Park D, Ryu J. Deep convolutional neural networks for pest classification on tomato crops. Comput Electron Agric. 2021; 187:106285. https://doi.org/10.1016/j.compag.2021.106285
53. Ali R, Khan I, Rehman A. PestNet: deep residual network for agricultural pest classification. Expert Syst Appl. 2022; 204:117597. https://doi.org/10.1016/j.eswa.2022.117597
54. Gao J, Zhang H, Luo W. Transfer learning for small dataset pest detection in smart agriculture. IEEE Access. 2023; 11:21547–21556. https://doi.org/10.1109/ACCESS.2023.3256378
55. Yu X, Zhang W. Insect pest identification using transformer-based vision networks. Appl Sci. 2024; 14(2):741. https://doi.org/10.3390/app14020741
56. Li B, Chen X. Explainable AI models for pest identification and crop protection. Comput Intell Neurosci. 2023; 2023:6612348. https://doi.org/10.1155/2023/6612348
57. Zhao W, Xu Z, Liu Y. An IoT-based pest monitoring system using computer vision and deep learning. Sensors. 2022; 22(13):4723. https://doi.org/10.3390/s22134723
58. Wang H, Zhang X. Integration of AI and UAV for precision pest detection and pesticide optimization. Agronomy. 2023; 13(4):1187. https://doi.org/10.3390/agronomy13041187
59. Singh M, Thakur A, Sharma K. Image segmentation techniques for pest detection: a review. Artif Intell Agric. 2023; 12:74–88. https://doi.org/10.1016/j.aiia.2023.06.002
60. Zhang Q, Xu J, Li L. Lightweight deep learning approaches for real-time pest monitoring. Neural Netw. 2023; 165:499–511. https://doi.org/10.1016/j.neunet.2023.07.001
61. Rai R, Gupta D. Fuzzy logic-based pest control decision systems using computer vision data. Inf Process Agric. 2022; 9(4):552–562. https://doi.org/10.1016/j.inpa.2021.12.003
62. Yao S, Chen M, Wang Z. Pest detection and classification using YOLOv7 framework in orchard environments. Comput Electron Agric. 2024; 215:108121. https://doi.org/10.1016/j.compag.2024.108121
63. Hernandez A, Ponce D, Salazar A. CNN-based identification of rice pests using image augmentation and transfer learning. Ecol Inform. 2023; 77:102096. https://doi.org/10.1016/j.ecoinf.2023.102096
64. Bhattacharya P, Singh S, Raj A. Edge-AI-based pest surveillance and decision support in agriculture. IEEE Internet Things J. 2023; 10(12):10462–10474. https://doi.org/10.1109/JIOT.2023.3234561
65. Choi K, Lee D, Park S. Autonomous pest recognition robot using computer vision and deep reinforcement learning. Rob Auton Syst. 2023; 161:104379. https://doi.org/10.1016/j.robot.2023.104379
66. Khan R, Abbas S. Comparative evaluation of deep CNN architectures for insect pest classification. Comput Electron Agric. 2021; 190:106423. https://doi.org/10.1016/j.compag.2021.106423
67. Sahu P, Ghosh D. Multimodal data fusion for pest monitoring using thermal and visual imagery. Remote Sens Appl. 2023; 30:101013. https://doi.org/10.1016/j.rsase.2023.101013
68. Liu Z, Wang R. Real-time pest detection using YOLOv5s and Jetson Nano embedded platform. J Real-Time Image Process. 2023; 20(5):779–791. https://doi.org/10.1007/s11554-023-01216-1
69. Tan X, Guo H. Image-based pest detection using capsule networks. Pattern Recognit Lett. 2023; 173:41–49. https://doi.org/10.1016/j.patrec.2023.04.007
70. Zhang L, Han Y, Qiu J. Deep learning-enhanced image segmentation for pest detection under complex field conditions. Ecol Inform. 2023; 78:102127. https://doi.org/10.1016/j.ecoinf.2023.102127
71. Verma A, Sharma P. Crop pest classification using ensemble deep learning frameworks. Agric Inf Process Technol. 2024; 19:103428. https://doi.org/10.1016/j.aipt.2024.103428
72. He Q, Zhao D. YOLOv8-based smart pest identification and tracking for greenhouse crops. Sensors. 2024; 24(3):1061. https://doi.org/10.3390/s24031061
73. Singh R, Kumar P. Cloud-integrated pest management system using IoT and AI vision models. Agric Syst. 2023; 208:103905. https://doi.org/10.1016/j.agsy.2023.103905
74. Xie H, Zhou G. A generative adversarial network approach for pest data augmentation. Appl Soft Comput. 2023; 136:110082. https://doi.org/10.1016/j.asoc.2023.110082
75. Al-Saadi A, Badran A, Hussein R. Explainable computer vision for pest detection using Grad-CAM visualization. Comput Electron Agric. 2024; 218:108294. https://doi.org/10.1016/j.compag.2024.108294
76. Das S, Nanda S. Multi-class pest recognition using deep learning and image fusion. Inf Process Agric. 2022; 9(5):662–674. https://doi.org/10.1016/j.inpa.2022.01.006
77. Zhang M, Xu X. AI-based pest forecasting and decision support using time-series crop data. Precis Agric. 2023; 24(5):1441–1458. https://doi.org/10.1007/s11119-023-09925-2
78. Gupta V, Mehta P. Comparative performance of CNN and Vision Transformers for pest classification. Comput Intell Neurosci. 2024; 2024:7734125. https://doi.org/10.1155/2024/7734125
79. Ahmad A, Rahman S. Smart pest monitoring through IoT-enabled edge computing and AI. Sensors. 2023; 23(16):7185. https://doi.org/10.3390/s23167185
80. Zhou W, Li K. Federated learning framework for pest detection under privacy constraints. IEEE Trans Ind Inform. 2024; 20(4):5621–5631. https://doi.org/10.1109/TII.2024.3340287
81. Jadhav P, Kulkarni S. Dataset imbalance handling in pest recognition using hybrid augmentation techniques. Expert Syst Appl. 2023; 225:120041. https://doi.org/10.1016/j.eswa.2023.120041
82. Reddy A, Kumar S. Blockchain-integrated pest control systems for traceable agricultural protection. Agric Syst. 2024; 210:103962. https://doi.org/10.1016/j.agsy.2024.103962
83. Wang P, Li Y, Zhang X. Future directions of pest detection: integration of vision, robotics, and AI-driven decision support. Comput Electron Agric. 2024; 220:108365. https://doi.org/10.1016/j.compag.2024.108365.
84. Sharma, A., Sharma, S., Fayaz, F., Wakode, S., & Pottoo, F. H. (2020). Methods and Strategies Used in Green Chemistry: A Review. Current Organic Chemistry, 24(22), 2555–2565. https://doi.org/10.2174/1385272824999200802025233