ABSTRACT:
The purpose of this work was to develop and validate an appropriate analytical technique using RP-HPLC in conjunction with organic acids and (C4H6O6) tartaric acid. For the quantitative measurement of tartaric acid, sodium bicarbonate, sodium citrate, and tartaric acid granules, a straightforward, sensitive, and reliable technique was created. For the quantitative analysis, reverse-phase and 210nm UV/visible detectors were discovered and used. For this decision, an easy isocratic procedure was questioned. With the aid of (H3PO4) orthophosphoric acid, the optimal mobile phase was (KH2PO4) 0.01M potassium dihydrogen phosphate, which had a pH of around 2.6. The pH balance is maintained with orthophosphoric acid. The chromatographic conditions for the best separation of tartaric acid, RP-column C18 Shimadzu GIST Shim pack (4.6mm x 250mm, 5um) with a flow rate of 1ml, wavelength of 210nm, and injection volume of 20 l. The oven is set to a temperature of around 30 °C, and the RP-HPLC method takes about 15 minutes to complete.
Cite this article:
Seema Gosavi, Rushikesh Nanaware. An Updated Review on Analytical Method Validation of Tartaric Acid from Sodium Bicarbonate, Sodium Citrate, Citric Acid and Tartaric Acid Granules by RP-HPLC. Asian Journal of Pharmaceutical Analysis. 2024; 14(2):81-5. doi: 10.52711/2231-5675.2024.00015
Cite(Electronic):
Seema Gosavi, Rushikesh Nanaware. An Updated Review on Analytical Method Validation of Tartaric Acid from Sodium Bicarbonate, Sodium Citrate, Citric Acid and Tartaric Acid Granules by RP-HPLC. Asian Journal of Pharmaceutical Analysis. 2024; 14(2):81-5. doi: 10.52711/2231-5675.2024.00015 Available on: https://ajpaonline.com/AbstractView.aspx?PID=2024-14-2-6
REFERENCE:
1. E. Lopez-Tamames, M. A. Puig-Deu, E. Teixeira, S. Buxaderas, Am. J. Enol. Vitic. 47 (1996) 193–197.
2. R. F. Frayne, Am. J. Enol. Vitic. 37 (1986) 281–287.
3. J. D. McCord, E. Trousdale, D. D. Y. Ryu, Am. J. Enol. Vitic. 35 (1984) 28–29.
4. Guide to Aminex HPLC Columns for Food and Beverage Analysis, Bio-Rad, Chemical Division, Richmond, CA, USA.
5. Product names, definitions of products and characteristics, Directive 2012/12/EU of the European Parliament and of the Council
6. F. O. Silva, V. Ferraz, Food Chem. 2004, 88, 609–612. https://doi.org/10.1016/j.foodchem. 2004.05.002
7. S. C. Cunha, J. O. Fernandes, I. M. Ferriera, Eur. Food Res. Technol. 2002; 214: 67–71. https://doi.org/10.1007/s002170100412
8. E. Kafkas, M. Kosar, N. Turemis, K. H. C. Baser. Food Chem. 2006, 97, 732–736. https://doi.org/10.1016/j.foodchem.2005.09.023
9. K. L. Penniston, S. Y. Nakada, R. P. Holmes, D. G. Assimos, J. Endourol. 2008, 22, 567–570.
10. C. Canel, J. N. Bailey-Serres, M. L. Roose, Plant Physiol. 1995, 108, 1323–1324.
11. V. Karuppiah, N. Kannappan, and R. Manavalan. In-vitro and in-vivo dissolution of dipyridamole extended release capsules. International Journal of Pharmaceutical Sciences Review and Research. 2012; 13(1).
12. S. U. Ahmed, P. R. Katikaneni, and Y. Zu. Pharmaceutical capsules comprising extended release dipyridamole pellets. WO2009097156A1, 2009.
13. Persantin Retard 200 mg, Summary of Product Characteristics (SmPC), The electronic Medicines Compendium (emc), https://www.medicines.org.uk/emc/product/897/smpc.
14. S. S. Raju, U. Vidyamani, P. Jayapal, and P. Naga Raju, Development and validation of a head space gas chromatographic method for the determination of ethylene oxide content in dipyridamole API. World Journal of Pharmaceutical Research. 4(11): 1127–1139.
15. A. R. Zoest, J. E. Watson, C. T. Hung, and S. A. Wanwimolruk. Rapid isocratic HPLC assay for dipyridamole using a microbore column technique. Journal of Liquid Chromatography. 1991; 14(10): 1967–1975.
16. J. H. Bridle and M. T. Brimble. A stability indicating method for dipyridamole. Informa Healthcare Drug Development and Industrial Pharmacy. 1993; 19(3): 371–381.