Review on Analytical Methods for Estimation of Antidiabetic Drugs: Empagliflozin, Linagliptin and Metformin Hydrochloride
M. M. Eswarudu*, G. Ouchitya, N. Sudhakar Reddy, M. Deekshitha, P. Srinivasa Babu
Department of Pharmaceutical Analysis, Vignan Pharmacy College, Vadlamudi, 522213, Andhra Pradesh, India
*Corresponding Author E-mail: eswarmunnangi@gmail.com
ABSTRACT:
Pharmaceutical analysis is necessary at all stages of the drug development process, including formulation development, stability studies, and quality control. It is also used for characterizing the composition of different dosage forms in quantitative and qualitative ways. Comprehensive literature survey forms the foundation stone for the focused analysis of research activity. This review article represents the collection and discussion of various analytical methods available in the literature for the determination of oral anti-diabetic drugs like Empagliflozin (EMPA), Linagliptin (LINA) and Metformin hydrochloride (MET) for the treatment of type II diabetes mellitus, consisting of UV, TLC, HPTLC, and HPLC. The anticipated review provides details about the comparative utilization of various analytical techniques for the determination of EMPA, LINA and MET. This review article can be effectively explored to conduct future analytical investigation for the estimation of selected drugs in pharmaceutical and biological samples.
KEYWORDS: Empagliflozin, Linagliptin, Metformin hydrochloride, HPTLC, RP-HPLC.
INTRODUCTION:
Empagliflozin is an orally active sodium glucose co-transporter-2 (SGLT-2) inhibitor used to control type II diabetes. It belongs to gliflozin class with chemical name (2S,3R,4R,5S,6R)-2-[4-chloro-3-[[4-[(3S)-oxolan-3-yl] oxyphenyl] methyl] phenyl]-6-(hydroxymethyl) oxane-3,4,5-triol and having an empirical formula and molecular weight of C23H27ClO7 and 450.91g/mol. It is very slightly soluble in water, slightly soluble in acetonitrile and ethanol and sparingly soluble in methanol1. Chemical Structure of Empagliflozin is shown in Figure-1.
Figure-1: Chemical Structure of Empagliflozin
Linagliptin is an orally-active inhibitor of the dipeptidyl peptidase-4 (DPP-4) enzyme. Chemically Linagliptin is 8-[(3R)-3-aminopiperidin-1-yl]-7-but-2-ynyl-3-methyl-1-[(4-methylquinazolin-2-yl) methyl] purine-2,6-dione having an empirical formula of C25H28N8O2 with molecular weight 472.5422 g/mol. It is soluble in methanol, sparingly soluble in ethanol, and very slightly soluble in isopropanol2. Chemical structure of Linagliptin is depicted in Figure-2.
Figure-2: Chemical Structure of Linagliptin
Metformin hydrochloride belongs to antihyperglycemic agent of the biguanide class which is used for the management of type II diabetes. For the purpose of increasing solubility, metformin formulations are present in its salt form as Metformin Hydrochloride. Chemically Metformin hydrochloride is 3-(diamino methylidene)-1,1-dimethylguanidine having an empirical formula of C14H11N5.HCl with molecular weight 165.625g/mole. It is freely soluble in water, slightly soluble in alcohol and acetonitrile and practically insoluble in acetone, ether and chloroform3. Metformin hydrochloride structure is shown in Figure-3.
Empagliflozin, Linagliptin and Metformin hydrochloride combination was approved for use in the United States in January 2020. The combination works by three complementary mechanisms which help in managing blood glucose in adult with type II diabetes mellitus. The fixed dose combination of these three drugs was sold under the brand name Trijardy XR4. Oral Empagliflozin, Linagliptin and Metformin hydrochloride combination of controlled release tablets as a triple fixed-dose combination (FDC), are being developed by Boehringer Ingelheimin collaboration with Eli Lilly, for the treatment of type II diabetes mellitus5.
Figure-3: Chemical Structure of Metformin Hydrochloride
Reported analytical methods:
Table –1: Methods for Empagliflozin, Linagliptin and Metformin Hydrochloride combination
Method |
Description |
Ref. No. |
|
1 |
RP-HPLC |
Stationary Phase: Pheonex C18 column (250mm X 4.6mm ;5µm) Mobile Phase: Acetonitrile: Methanol: Water (27:20:53 % v/v/v) Wavelength: 223nm Flow rate: 1ml/min Linearity range: 0.5-5 µg/ml EMPA; 0.25-2.5µg/ml LIN; 50-500 µg/ml MET Retention time: 14.5 min EMPA; 3.4 min LIN; 2.01 min MET LOD: 0.03µg/ml EMPA; 0.04 µg/ml LIN; 5.65µg/ml MET LOQ: 0.10µg/ml EMPA; 0.12µg/ml LIN; 17.12µg/ml MET Theoretical plates: 2426.62 EMPA; 32021 LIN; 2238 MET Tailing factor: 1.0 EMPA; 1.0 LIN; 1.25 MET |
6 |
2 |
RP-HPLC |
Stationary Phase: Kromosil (250mmX4.6mm;5µm) column Mobile Phase: Buffer: Acetonitrile (45:55 %v/v) Flow rate: 1ml/min Linearity range: 2.5 – 15µg/ml EMPA; 250-1500µg/ml MET; 1.25-7.5 µg/ml LIN Retention time: 2.787min EMPA; 3.419 min MET; 2.370 min LIN %Recovery: 99.47 % EMPA; 100.01 % MET; 99.99 % LIN LOD: 0.08µg/ml EMPA; 9.22µg/ml MET; 0.02µg/ml LIN LOQ: 0.25µg/ml EMPA; 27.94µg/ml MET; 0.05µg/ml LIN |
7 |
3 |
HPLC |
Stationary Phase: C18 column Mobile Phase: Acetonitrile: phosphate buffer (38:62 % v/v) Wavelength: 222nm Flow rate: 1ml/min Retention time: 3.93 min EMPA; 2.04 min MET; 5.99 min LIN Linearity range: 0.2-40µg/ml EMPA; 1-200µg/ml MET; 0.1-20µg/ml LIN |
8 |
*EMPA-Empagliflozin, MET-Metformin, LIN-Linagliptin
Table – 2: Methods for Empagliflozin and Linagliptin combination
S. No. |
Method |
Description |
Ref. No. |
1 |
RP-HPLC |
Stationary Phase: C18 column (BDS 250 mm X4.6 mm ;5 µm) Mobile Phase: 0.1% Perchloric acid: Acetonitrile (60:40) Wavelength: 230nm Flow rate: 1ml/min Retention time: 2.05 min EMPA; 4.10 min LIN Linearity range: 25 -150µg/ml EMPA; 12.5 -75µg/ml LIN % Recovery: 100.96 -101.48 % EMPA; 100.09 -101.13 % LIN LOD: 0.03µg/ml EMPA; 0.43µg/ml LIN LOQ: 0.09µg/ml EMPA ;1.32µg/ml LIN |
9 |
2 |
RP-HPLC |
Stationary Phase: Thermo C18 column (250 mm X4.6 mm ;5 µm) Mobile Phase: Acetonitrile: Methanol (50:50 %v/v) Wavelength: 280nm; Flow rate: 1ml/min Linearity range: 5-25µg/ml EMPA; 1-5µg/ml LIN Run time: 7 min Retention time: 3.3 min EMPA; 4.08 min LIN LOD: 0.12µg/ml EMPA; 0.10µg/ml LIN; LOQ: 0.40µg/ml EMPA; 0.25µg/ml LIN Theoretical plates: 2639.83 EMPA; 3169.83LIN |
10 |
3 |
RP-HPLC |
Stationary Phase: Kromosil (250 mmX4.6 mm ;5 µm) column Mobile Phase: 0.1% Ortho phosphoric acid buffer: Acetonitrile (60:40 %v/v) Wavelength: 230nm; Flow rate: 1 mi/min Retention time: 2.137 min EMPA; 2.759 min LIN LOD: 0.70µg/ml EMPA; 0.23µg/ml LIN; LOQ: 1.34µg/ml EMPA; 0.44µg/ml LIN |
11 |
4 |
TLC |
Stationary Phase: TLC Silica gel 60 F254 aluminium plates (20 cm X10 cm; 0.25 mm) Mobile Phase: Chloroform: Methanol: Ammonia (9:1:0.1v/v) Linearity range: 0.4-10µg/band EMPA; 0.2-5.0µg/band LIN Rf value: 0.25 EMPA; 0.56 LIN |
12 |
5 |
HPTLC |
Stationary Phase: HPTLC Nano silica gel 60 F254 glass plates (10 cm X10 cm; 0.1 mm) Mobile Phase: Chloroform: Methanol: Ammonia (25%) (10:1:0.1v/v) Linearity range: 0.1-5µg/band EMPA; 0.05-2.5µg/band LIN Rf values: 0.31 EMPA; 0.71 LIN |
13 |
6 |
HPTLC |
Linearity range: 0.2-1.2 µg/band EMPA; 0.1-0.6 µg/band LIN LOD: 1.678µg/band EMPA; 1.56µg/band LIN LOQ: 1.565µg/band EMPA; 1.46µg/band LIN % Recovery: 99.71 % EMPA; 99.64 % LIN Rf value: 0.57 EMPA; 0.22 LIN |
14 |
7 |
UV |
Wavelength: 276nm EMPA; 293nm LIN Linearity range: 5-80µg/ml (both) % Recovery: 99-101 % (both) LOD: 0.7099µg/ml EMPA; 0.7916µg/ml LIN LOQ: 2.151µg/ml EMPA; 2.398µg/ml LIN |
15 |
Table – 3: Methods for Empagliflozin and Metformin combination
S. No. |
Method |
Description |
Ref. No. |
1 |
RP-HPLC |
Stationary Phase: Kromosil C18 column (50mm X4.6mm; 5µm) Mobile Phase: Acetonitrile: 0.1 % Ortho phosphoric acid (50:50 % v/v) Wavelength: 260 nm Flow rate: 1ml/min Linearity range: 1.25–7.50µg/ml EMPA; 125-750µg/ml MET Run time: 6 min Retention time: 3.20 min EMPA; 2.19 min MET %Recovery: 100.52 % EMPA; 100.55 % MET LOD: 0.01µg/ml EMPA; 0.50µg/ml MET LOQ: 0.03µg/ml EMPA; 1.52µg/ml MET |
16 |
2 |
HPLC |
Stationary Phase: X – Select -HSS C18 SB (4.6 mmX25 cm ;5 µm) Mobile Phase: Potassium dihydrogen phosphate: Acetonitrile (60:40 v/v) Wavelength: 255nm Flow rate: 1mi/min Retention time: 6.4 min EMPA; 2.6 min MET Run time: 8 min Injection volume: 10µl Linearity range: 3.13-9.38 µg/ml EMPA;250-750 µg/ml MET LOD: 0.352µg/ml EMPA; 36.80µg/ml MET LOQ: 1.055µg/ml EMPA; 110.401µg/ml MET Tailing factor: 6.37 EMPA; 2.66 MET |
17 |
3 |
HPTLC |
Stationary Phase: Silica gel precoated plates Mobile Phase: 2 % Ammonium acetate: Isopropyl alcohol: Triethyl -amine (4:6:0.1 %v/v/v) Wavelength: 242nm Linearity range: 125 -750 ng/band EMPA; 5000 –30000 ng/band MET %Recovery: 99.20 –101.50 % EMPA; 99.05 -102.54 % MET LOD: 24.65ng/band EMPA; 705.21ng/band MET LOQ: 74.70ng/band EMPA; 2136.99ng/band MET |
18 |
4 |
HPTLC |
Stationary Phase: Silica gel 60 F254 Mobile Phase: Toulene: 3%Ammonium acetate in methanol: ethyl- acetate: Ammonia (3:5:2:0.4 %v/v/v) Wavelength: 230 nm Linearity range: 500-2500 ng/band EMPA; 500-2500 ng/band MET %Recovery: 99.89–101.91 % EMPA; 98.56 -101.80 % MET LOD: 38.03 ng/band EMPA; 41.86 ng/band MET LOQ: 115.24 ng/band EMPA; 126.85 ng/band MET |
19 |
5 |
UV |
Wavelength: 224nm EMPA; 230nm MET Solvent: Methanol Linearity range: 1-3µg/ml EMPA; 10-50µg/ml MET LOD: 0.036µg/ml EMPA; 0.04µg/ml MET LOQ: 0.111 µg/ml EMPA; 0.1402 µg/ml MET |
20 |
Table – 4: Methods for Empagliflozin and Metformin
S. No. |
Drugs and Method |
Description |
Ref. No. |
1 |
EMPA (RP-HPLC) |
Stationary Phase: C18 column (100 mm X2.5 mm; 5 µm) Mobile Phase: Methanol: Water with 0.1 % Ortho phosphoric acid (70:30 % v/v) Wavelength: 296 nm Flow rate: 0.8ml/min Linearity range: 2.5–1.50 µg/ml Retention time: 1.283 min |
21 |
2 |
EMPA (RP-HPLC) |
Stationary Phase: Phenomenex C18 column (250 mm X4.6 mm; 5 µm) Mobile Phase: Methanol: Water (70:30 % v/v) Flow rate: 1 ml/min Linearity range: 2–14 µg/ml |
22 |
3 |
EMPA (UV) |
Wavelength: 224 nm Solvent: Methanol: Water (9:1) Linearity range: 1-3 µg/ml LOD: 0.036 µg/ml LOQ: 0.111 µg/ml |
23 |
4 |
EMPA (UV) |
Wavelength: 223 nm Solvent: Methanol and Water Linearity range: 1-30 µg/ml LOD: 0.10 µg/ml LOQ: 0.33 µg/ml |
24 |
5 |
MET (UV) |
Wavelength: 228-236 nm Solvent: Distilled water Linearity range: 1-14 µg/ml LOD: 0.365 µg/ml LOQ: 1.109 µg/ml |
25 |
6 |
GEM and MET (RP-HPLC) |
Stationary Phase: Zorbax eclipse XDB C18 column (250 mm X4.6 mm; 5 µm) Mobile Phase: Methanol: Water (20:80 % v/v) Wavelength: 233 nm Flow rate: 1 ml/min Linearity range: 1–35 µg/ml GEM; 2-18 µg/ml MET Retention time: 2.3 min GEM; 2.18 min MET |
26 |
7 |
MET and DAPA (RP-HPLC) |
Stationary Phase: Cosmosil C18 column (250 mm X4.6 mm; 5 µm) Mobile Phase: Methanol: Potassium dihydrogen Ortho phosphate buffer (80:20 %v/v) Wavelength: 228 nm Linearity range: 100-500 µg/ml MET; 1-5 µg/ml DAPA Retention time: 3.6 min MET; 5.2 min DAPA LOD: 0.837 µg/ml MET; 0.052 µg/ml DAPA LOQ: 0.158 µg/ml MET; 2.538 µg/ml DAPA |
27 |
8 |
MET and REPA (RP-HPLC) |
Stationary Phase: Hypersil ODS C18 column (250 mm X4.6 mm; 5 µm) Mobile Phase: Acetonitrile: 0.05 M Ammonium Acetate (60:40 %v/v) Wavelength: 271 nm Linearity range: 200-1200 µg/ml MET; 0.5-3 µg/ml REPA Retention time: 3.13 min MET; 10.01 min REPA LOD: 0.00037 µg/ml MET; 0.00016 µg/ml REPA LOQ: 0.0012 µg/ml MET; 0.00048 µg/ml REPA |
28 |
9 |
MET and PIO (RP-HPLC) |
Stationary Phase: BDS Hypersil C18 column (250 mm X4.6 mm; 5 µm) Mobile Phase: Acetonitrile: Potassium dihydrogen ortho phosphate (50:50 %v/v) Wavelength: 238 nm Linearity range: 40-240 µg/ml MET; 12-72µg/ml PIO Retention time: 2.81 min MET; 4.57 min PIO |
29 |
*GEM-Gemigliptin, DAPA-Dapagliflozin, REPA-Repaglinide, PIO-Pioglitazone
CONCLUSION:
The above study presents analytical methods for the estimation of Empagliflozin, Linagliptin and Metformin hydrochloride in bulk materials and pharmaceutical dosage forms. Literature survey suggested that various RP-HPLC, HPTLC, TLC, UV methods were developed and reported. Hence all these methods are used to estimate and validate these in simple, economic, precise, accurate and reproducible ways. This review suggested that liquid chromatographic methods are widely used for estimation of drugs like Empagliflozin, Linagliptin and Metformin Hydrochloride. This review will help in future to develop the novel analytical methods for the approved antidiabetic drugs.
ACKNOWLEDGEMENTS:
The authors are thankful to Vignan Pharmacy College, Vadlamudi, for providing all necessary facilities to carryout this review work.
CONFLICTS OF INTEREST STATEMENT:
All the authors declare that they do not have any conflicts of interest.
REFERENCES:
1. Empagliflozin drug profile: https://pubchem.ncbi.nlm.nih.gov/compound/Empagliflozin
2. Linagliptin drug profile: https://pubchem.ncbi.nlm.nih.gov/compound/Linagliptin
3. Metformin Hydrochloride drug profile: https://pubchem.ncbi.nlm.nih.gov/compound/Metformin
4. https://www.rxlist.com/trijardy-xr-drug.html
5. https://investor.lilly.com/news-releases/news-release-details/us-fda-approves-only-triple-combination-tablet-jardiancer-adults
6. Patel et al. Simultaneous quantification of Empagliflozin, linagliptin and metformin hydrochloride in bulk and synthetic mixture by RP–LC method. Future Journal of Pharmaceutical Sciences. 2021;7(182):1-10. Doi: 10.1186/s43094-021-00332-1
7. Kiran T. Naga Ravi et al. Development and validation of RP-HPLC method for the simultaneous estimation of linagliptin, empagliflozin and metformin in solid dosage forms. Asian Journal of Pharmaceutical Analysis. 2020;10(3):117-124. Doi:10.5958/2231-5675.2020.00021.6
8. Sunitha Gurrala et al. Quality by design approach for chromatographic analysis of Metformin hydrochloride, empagliflozin and linagliptin. Journal of chromatographic science. 2022;60(1):68-80. Doi: https://doi.org/10.1093/chromsci/bmab030
9. Naazneen S, Sridevi A. Development and validation of stability indicating RP-HPLC method for simultaneous estimation of empagliflozin and linagliptin in tablet formulation. Der Pharmacia Lettre. 2016:8(17):57-65.
10. Udai Bhan Singh Rathore et al. Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Empagliflozin and Linagliptin in Solid Dosage Forms. European Journal of Molecular and Clinical Medicine. 2020;7(1):4666-4673.
11. Lakshmana Rao A et al. RP-HPLC method development and validation for simultaneous quantification of empagliflozin and linagliptin. Indian drugs journal. 2019; 56 (5):68-71. Doi: https://doi.org/10.53879/id.5 Linagliptin 6.05.11150.
12. Mohamed Rizk et al. Development and validation of thin-layer chromatography and high-performance thin-layer chromatography methods for the simultaneous determination of linagliptin and empagliflozin in their co-formulated dosage form. Journal of Planar Chromatography. 2020; 33:647–661.doi:10.1007/s00764-020-00074-5
13. Mohamed Rizk et al. Development and validation of thin-layer chromatography and high-performance thin-layer chromatography methods for the simultaneous determination of linagliptin and empagliflozin in their co-formulated dosage form. Journal of Planar Chromatography. 2020; 33:647–661.Doi: 10.1007/s00764-020-00074-5
14. Rithesh P Bhole et al. Stability indicating HPTLC method for simultaneous estimation of empagliflozin and linagliptin in pharmaceutical formulation. Analytical Chemistry Letters. 2017;7(1):76-85
15. Sachin S. Rane et al. Development and validation of UV spectrophotometric method for simultaneous estimation of Empagliflozin and Linagliptin in bulk drugs and pharmaceutical dosage form. Doctrines of Integrative Medicine, Pharmacy and Science International Journal. 2021;01(01):44-53
16. Vinay Kumar D et al. A New Validated Stability Indicating RP-HPLC Method for Simultaneous Estimation of Metformin Hydrochloride and Empagliflozin in Tablet Dosage Forms. International Research Journal of Pharmacy and Medical Sciences. 2018;1(5):16-22
17. Alaa S. Amin et al. Simultaneous for the Estimation of Metformin and Empagliflozin in Pharmaceutical Dosage Form by HPLC Method. Journal Of Pharmacy and Biological Sciences. 2019;14(1):75-80. Doi:10.9790/3008-1401037580
18. Manoj Kumar K. Munde et al. A Novel Validated Stability Indicating Analytical Method for Simultaneous Quantification of Metformin Hydrochloride and Empagliflozin in Bulk and Marketed Formulation by HPTLC using Box-Wilson Experimental Design Approach. 2020;54(3):S644-S656.Doi: 10.5530/ijper.54.3s.164
19. Praful et al. Development and validation of HPTLC method for estimation of metformin hydrochloride and empagliflozin in combined tablet dosage form using quality by design approach. Pharma Science Monitor. 2019;10(2):83-100
20. Patil Sushil D. Development and validation of UV Spectrophotometric method for simultaneous estimation of Empagliflozin and Metformin Hydrochloride in bulk drugs. Asian Journal of Pharmaceutical analysis. 2017;7(2):117-123. Doi: http://dx.doi.org/10.5958/2231-5675.2017.00019.9
21. Vijaya Sri K et al. A Rapid RP-HPLC Method development and Validation for the Analysis of Linagliptin in Bulk and Pharmaceutical Dosage Form. Asian Journal of Pharmaceutical Analysis. 2015;5(1):16-20.
22. Sushil D. Patil et al. Development and Validation of Stability Indicating RP-HPLC Method for Empagliflozin. Asian Journal of Pharmaceutical Analysis. 2016;6(4):201-206. Doi: https://doi.org/10.5958/2231-5675.2016.00030.2
23. Sushil D. Patil et al. Development and Validation of Simple UV- Spectrophotometric Method for the Determination of Empagliflozin. Asian Journal of Pharmaceutical Analysis. 2017;7(1):18-22. Doi: https://doi.org/10.5958/2231-5675.2017.00004.7
24. Shaik Bima Benazir et al. Method Development and Validation of Empagliflozin in Bulk and Pharmaceutical Dosage Form using UV Spectroscopy. Asian Journal of Pharmaceutical Analysis. 2021;11(2):123-126. Doi: http://dx.doi.org/10.52711/2231-5675.2021.00021
25. Rajan V. Rele. UV Spectrophotometric Estimation of Metformin hydrochloride by Area under Curve Methods in Bulk and Pharmaceutical Dosage Form. Asian Journal of Research Chemistry. 2019;12(3):187-190. Doi: https://doi.org/10.5958/0974-4150.2019.00035.X
25.
26. Vaishali P. Shelke. Development and Validation of RP-HPLC Method for the Estimation of Gemigliptin and Metformin Hydrochloride. Asian Journal of Pharmaceutical Analysis. 2021;11(4):259-262. Doi: https://doi.org/10.52711/2231-5675.2021.00044
27. Nachiket S. Dighe et al. Quantitative Estimation and Validation of Dapagliflozin and Metformin Hydrochloride in Pharmaceutical Dosage form by RP-HPLC. Asian Journal of Research Chemistry. 2019;12(3):136-142. Doi: http://dx.doi.org/10.5958/0974-4150.2019.00028.2
28. Kalyankar TM, Kakde RB. Reversed-Phase Liquid Chromatographic Method for Simultaneous Determination of Metformin and Repaglinide in Pharmaceutical Preparations. Research Journal of Pharmaceutical Dosage Forms and Technology. 2011;3(5):233-237.
29. Swapna J et al. Analytical method development and method validation for the simultaneous estimation of metformin hydrochloride and pioglitazone hydrochloride in tablet dosage form by RP-HPLC. Asian Journal of Pharmaceutical Analysis. 2012;2(3):85-89.
Received on 13.05.2022 Modified on 23.10.2022
Accepted on 06.12.2022 ©Asian Pharma Press All Right Reserved
Asian J. Pharm. Ana. 2023; 13(1):42-46.
DOI: 10.52711/2231-5675.2023.00007